Data Analytics: Definition, Uses, Examples, and More

Written by Coursera Staff • Updated on

Learn about data analytics, how it's used, common skills, and careers that implement analytical concepts.

[Featured image] Two coworkers sit at a desk and analyze data on a computer screen. On the wall behind them is a large screen presenting more data sequences.

Data analytics is the process of collecting, transforming, and organizing data in order to draw conclusions, make predictions, and drive informed decision making. The field encompasses data analysis, data science, and data engineering. In this article, you'll learn more about what data analytics is, how its used, and its key concepts. Afterward, if you're ready to explore a career in data, consider enrolling in the Google Data Analytics Professional Certificate, where you'll gain an immersive understanding of the practices and processes used by junior or associate data analysts.

What is data analytics?

Data analytics is a multidisciplinary field that employs a wide range of analysis techniques, including math, statistics, and computer science, to draw insights from data sets. Data analytics is a broad term that includes everything from simply analyzing data to theorizing ways of collecting data and creating the frameworks needed to store it.

How is data analytics used? Data analytics examples

Data is everywhere, and people use data every day, whether they realize it or not. Daily tasks such as measuring coffee beans to make your morning cup, checking the weather report before deciding what to wear, or tracking your steps throughout the day with a fitness tracker can all be forms of analyzing and using data.

Data is also crucial in a professional sense. Organizations that use data to drive business strategies often find that they are more confident, proactive, and financially savvy. As a result, data analytics is important across many industries. A sneaker manufacturer might look at sales data to determine which designs to continue and which to retire, or a health care administrator may look at inventory data to determine the medical supplies they should order.

Learn more about how data is used in the real world in this lecture from Google's Data Analytics Professional Certificate:

Read more: Health Care Analytics: Definition, Impact, and More

Data analytics: Key concepts

There are four key types of data analytics: descriptive, diagnostic, predictive, and prescriptive.  Together, these four types of data analytics can help an organization make data-driven decisions. At a glance, each of them tells us the following:

  • Descriptive analytics tell us what happened.

  • Diagnostic analytics tell us why something happened.

  • Predictive analytics tell us what will likely happen in the future.

  • Prescriptive analytics tell us how to act.

People who work with data analytics will typically explore each of these four areas using the data analysis process, which includes identifying the question, collecting raw data, cleaning data, analyzing data, and interpreting the results.

Read more: What Is Data Analysis? (With Examples)

Data analytics skills

Data analytics requires a wide range of technical data skills to be performed effectively. Approaching the skills listed below methodically—for example, by learning a little bit each day—can help lead to mastery.

  • Statistical programming languages: R and Python are commonly used to create advanced data analysis programs

  • Machine learning: a branch of artificial intelligence that involves using algorithms to spot data patterns

  • Probability and statistics: in order to better analyze and interpret data trends

  • Data management: the practices around collecting, organizing and storing data

  • Econometrics, or the ability to use data trends to create mathematical models that forecast future trends based

Read more: Is Data Analytics Hard? Tips for Rising to the Challenge

Develop your skills working with Excel and R in the IBM Data Analytics with Excel and R Professional Certificate.

Data analytics jobs

Typically, data analytics professionals make higher-than-average salaries and are in high demand within the labor market. The US Bureau of Labor Statistics (BLS) projects that careers in data analytics fields will grow by 23 percent between 2022 and 2032—much faster than average—and are estimated to pay a higher-than-average annual income of $85,720 [1]. But, according to the Anaconda 2022 State of Data Science report, 63% of commercial organizations surveyed expressed concern over a talent shortage in the face of such rapid growth [2].

Entry-level careers in data analytics include roles such as:

  • Junior data analyst

  • Associate data analyst

  • Junior data scientist

You can practice statistical analysis, data management, and programming using SQL, Tableau, and Python in Meta's beginner-friendly Data Analyst Professional Certificate. Designed to prepare you for an entry-level role, this self-paced program can be completed in just 5 months.

As you gain more experience in the field, you may qualify for mid- to upper-level roles like:

Click through the links above to learn more about each career path, including what the roles entail as well as average salary and job growth.

Read more: How Much Do Data Analysts Make? Salary Guide

Have career questions? We have answers.

Subscribe to Coursera Career Chat on LinkedIn to receive our weekly, bite-sized newsletter for more work insights, tips, and updates from our in-house team.

Placeholder

Learn more about data analytics

Data analytics is all about using data to gain insights and make better, more informed decisions. Learn from the best in Google's Data Analytics Professional Certificate, which will have you job-ready for an entry-level data analytics position in approximately six months. There, you’ll learn key skills like data cleaning and visualization and get hands-on experience with common data analytics tools through video instruction and an applied learning project. 

Article sources

1

US Bureau of Labor Statistics. "Occupational Outlook Handbook: Operations Research Analysts, https://www.bls.gov/ooh/math/operations-research-analysts.htm." Accessed March 19, 2024.

Keep reading

Updated on
Written by:

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.