University of Colorado Boulder
Introduction to Computer Vision

Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
University of Colorado Boulder

Introduction to Computer Vision

Tom Yeh

Dozent: Tom Yeh

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Anfänger

Empfohlene Erfahrung

Es dauert 20 Stunden
3 Wochen bei 6 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Auf einen Abschluss hinarbeiten
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Anfänger

Empfohlene Erfahrung

Es dauert 20 Stunden
3 Wochen bei 6 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Auf einen Abschluss hinarbeiten

Was Sie lernen werden

  • Understand the fundamental principles and algorithms of classical computer vision.

  • Apply deep learning models to various computer vision tasks.

  • Evaluate and implement computer vision solutions for real-world applications.

Kompetenzen, die Sie erwerben

  • Kategorie: Image Segmentation
  • Kategorie: Deep Learning Methods
  • Kategorie: Image Analysis
  • Kategorie: 3D Vision
  • Kategorie: Classical Feature Detection

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Juni 2024

Bewertungen

26 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 4 Module

This module introduces foundational concepts related to common image types and functions. It offers a comprehensive overview of different formats and their unique characteristics. This section establishes the context for understanding how images are represented and processed in various applications. Next, the module delves into image functions, explaining the basic operations that can be performed on images to enhance or manipulate them, such as cropping, resizing, or adjusting brightness. It also covers more advanced operations like filtering and thresholding, illustrating how these functions play a crucial role in image processing. Then the module explores the underlying mathematics of image transformations. It starts with linear transforms, highlighting their application in image scaling, rotation, and translation. The module then introduces homogeneous coordinates, providing a simplified approach to represent complex transformations with additional dimensions. This leads into a deeper exploration of homogeneous transformations, demonstrating how they are used to perform multiple transformations in a single step.

Das ist alles enthalten

7 Videos4 Lektüren5 Aufgaben

This module provides a deep dive into image analysis and similarity assessment techniques. It starts by exploring the basic concept of comparing pixels, highlighting how individual pixel values can be used to gauge similarity. This is followed by a detailed discussion on comparing multiple images by their features, emphasizing the advantages of feature-based analysis over pixel-by-pixel comparison. The module introduces the concept of image moments, revealing how these statistical properties help identify shapes and patterns within images. The module then addresses similarity and distance, offering a quick overview of how these concepts are calculated and applied in image processing. You'll also learn about converting pixels into distributions, an essential technique for more complex analysis. This leads to a comprehensive explanation of cross-entropy, providing insights into its role in measuring the dissimilarity between distributions. You'll explore cross-correlation in 1D, followed by a deeper examination of cross-correlation as matrix multiplication. The module wraps up by exploring cross-correlation in more detail, with a focus on the mathematics behind it.

Das ist alles enthalten

10 Videos9 Aufgaben

This module delves into multiview geometry, a pivotal concept in computer vision and 3D modeling. It starts with a brief overview of the motivation behind multiview systems, highlighting the advantages of capturing scenes from multiple viewpoints. The module then discusses multiple coordinate systems, exploring how different reference frames can describe points and transformations in 3D space. You'll also learn about multiple viewing planes, which play a crucial role in multiview setups by providing unique perspectives for scene reconstruction. The focus shifts to multiview projection, examining how distinct images from multiple cameras can be used to create a cohesive 3D scene. You'll gain insights into the principles of translation and rotation in 3D, crucial for understanding camera movement and orientation. The module also covers camera translation and camera rotation, offering practical examples to illustrate how camera motion affects the geometry and visual representation of a scene.

Das ist alles enthalten

8 Videos6 Aufgaben

This module delves into key concepts of camera models and their role in computer vision and photogrammetry. Learn about the Extrinsic Matrix, exploring how it defines the position and orientation of a camera in 3D space. Understand the Pinhole Camera Model, a simplified optical system that forms the basis for many computer vision applications, alongside the Intrinsic Matrix, which captures the internal parameters of the camera. Epipolar geometry is examined, with a focus on its significance in 3D reconstruction and stereo vision. The module covers the motivation behind epipolar geometry, breaking down its basic components, and explaining the Essential Matrix, which encapsulates the geometric relationship between camera views, as well as the Fundamental Matrix, a core component in epipolar geometry that represents the relationship between two cameras in stereo vision.

Das ist alles enthalten

6 Videos6 Aufgaben

Dozent

Tom Yeh
University of Colorado Boulder
2 Kurse6.046 Lernende

von

Empfohlen, wenn Sie sich für Software Development interessieren

Auf einen Abschluss hinarbeiten

Dieses Kurs ist Teil des/der folgenden Studiengangs/Studiengänge, die von University of Colorado Boulderangeboten werden. Wenn Sie zugelassen werden und sich immatrikulieren, können Ihre abgeschlossenen Kurse auf Ihren Studienabschluss angerechnet werden und Ihre Fortschritte können mit Ihnen übertragen werden.¹

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen