ソフトウェア開発者であれば、拡張性のあるAI搭載アルゴリズムを構築したい場合、構築ツールの使い方を理解する必要があります。この講座は今後学んでいく「TensorFlow in Practice 専門講座」の一部であり、機械学習用の人気のオープンソースフレームワークであるTensorFlowのベストプラクティスを学習します。
Empfohlene Erfahrung
Was Sie lernen werden
現実世界の画像データを扱う
損失と精度をプロットする
拡張とDropout を含めた過学習を防ぐための戦略を探る
転移学習および、学習済みの特徴をモデルから抽出する方法を学ぶ
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
4 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 4 Module
本専門講座の 1 つ目の講座では、TensorFlowを紹介し、そのハイレベルAPIで基本的な画像分類を行い、畳み込みニューラルネットワーク(ConvNet)についても少し学びました。本講座では、ConvNetによる現実世界のデータの使用をより詳しく学び、特に画像分類を行う際にConvNetの性能を高める技法について学びます。1週目では、まず、今まで使用してきたものよりはるかに大きなデータセット、すなわち、画像分類のKaggle チャレンジだった「猫と犬」のデータセットより大きなデータセットを見ていきます。
Das ist alles enthalten
8 Videos5 Lektüren1 Aufgabe1 App-Element
これまでに過学習という用語を何度も耳にしていると思います。過学習とは、簡単に言うと、訓練における特殊化の行き過ぎを表す概念です。つまり、モデルは訓練したものの分類においては非常に優秀でも、見たことがないものの分類はあまり上手にできないということです。モデルをより効果的に汎用化するためには、当然、より幅広い訓練サンプルが必要になります。しかし、いつも入手できるわけではありません。そこで近道となり得るのが画像拡張です。訓練セットに手を加えて、被写体の多様性を高めることができます。今週は、それを詳しく学びます。
Das ist alles enthalten
7 Videos6 Lektüren1 Aufgabe1 App-Element
自分でモデルを構築するのは素晴らしいことであり、大きな強みです。しかし、これまで見てきたように、手持ちのデータに制限されることがあります。誰でも大量のデータセットやそれらを効果的に訓練するために必要な計算能力を入手できるわけではありません。転移学習は、この解決に役立ちます。大きなデータセットで訓練したモデルがある場合、それを直接利用するか、または学習した特徴を利用して、自分のシナリオに適用することができます。これを転移学習といい、今週はこれについて学びます。
Das ist alles enthalten
7 Videos5 Lektüren1 Aufgabe1 App-Element
お疲れ様でした。ConvNetから次のモジュールへ進む前に必要なことがもう一つあります。それは2値分類の先へ進むことです。今まで見てきた例は、「これか、あれか」つまり、馬と人間、猫と犬、という分類でした。2値分類からカテゴリー分類へ進む際には、考慮する必要があるコーディング上の事項がいくつかあります。今週は、それらを見ていきます。
Das ist alles enthalten
6 Videos5 Lektüren1 Aufgabe1 App-Element
Dozent
Empfohlen, wenn Sie sich für Machine Learning interessieren
The University of Tokyo
The University of Tokyo
DeepLearning.AI
Google
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.