The course "Core Concepts in AI" provides a comprehensive foundation in artificial intelligence (AI) and machine learning (ML), equipping learners with the essential tools to understand, evaluate, and implement AI systems effectively. From decoding key terminology and frameworks like R.O.A.D. (Requirements, Operationalize Data, Analytic Method, Deployment) to exploring algorithm tradeoffs and data quality, this course offers practical insights that bridge technical concepts with strategic decision-making.
Core Concepts in AI
Dieser Kurs ist Teil von Spezialisierung AI Strategy and Project Management
Dozent: Ian McCulloh
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Understand core AI and ML concepts, key vocabulary, and the R.O.A.D. Framework for effective AI project management and implementation.
Evaluate machine learning models using performance metrics and understand the tradeoffs in algorithm selection and optimization.
Analyze AI algorithms like SVM, Decision Trees, and Neural Networks, identifying their strengths, weaknesses, and practical applications.
Assess data quality, calculate inter-annotator agreement, and address resource and performance tradeoffs in AI and ML systems.
Kompetenzen, die Sie erwerben
- Kategorie: Machine Learning Evaluation
- Kategorie: Resource Management in AI Systems
- Kategorie: Data Quality Assessment
- Kategorie: Algorithm Analysis and Optimization
- Kategorie: AI Vocabulary Mastery
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
Dezember 2024
15 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 6 Module
This course provides a comprehensive introduction to key concepts in artificial intelligence (AI) and machine learning (ML). Learners will explore essential vocabulary, the R.O.A.D. Framework, performance evaluation, and algorithm tradeoffs. Topics include data quality, inter-annotator agreement, and the strengths and weaknesses of AI methods. By the end, learners will be equipped with the foundational knowledge to navigate and assess AI and ML systems effectively.
Das ist alles enthalten
1 Lektüre1 Plug-in
This module provides an introduction to artificial intelligence (AI). It does not require any prior knowledge of AI and is suitable for briefing managerial, and non-technical leaders to improve knowledge, expectations, and communication for AI projects.
Das ist alles enthalten
6 Videos4 Lektüren3 Aufgaben
This module covers the statistical foundations of machine learning and the common metrics for evaluating machine learning and artificial intelligence performance.
Das ist alles enthalten
6 Videos2 Lektüren3 Aufgaben
This module introduces the most common algorithms used in AI and machine learning, including support vector machines, Naïve Bayes, decision trees, random forest, and neural networks. We will discuss the strengths and weaknesses of these algorithms for different classes of problems.
Das ist alles enthalten
8 Videos2 Lektüren3 Aufgaben
This module explores data types (nominal, ordinal, categorical) and the challenges of data labeling, including human cognitive limits and reference issues. A key focus is inter-annotator agreement—a method to measure labeling consistency, highlighting biases and inefficiencies in human and machine processes. Consistent labeling, often more impactful than advanced algorithms, is crucial for responsible AI.
Das ist alles enthalten
9 Videos2 Lektüren3 Aufgaben
This module introduces the most common resource considerations in AI, specifically memory, computational tradeoffs, query expressiveness, and algorithm performance.
Das ist alles enthalten
10 Videos2 Lektüren3 Aufgaben
Dozent
Empfohlen, wenn Sie sich für Data Management interessieren
Google Cloud
Stanford University
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.