The "Data Processing and Manipulation" course provides students with a comprehensive understanding of various data processing and manipulation concepts and tools. Participants will learn how to handle missing values, detect outliers, perform sampling and dimension reduction, apply scaling and discretization techniques, and explore data cube and pivot table operations. This course equips students with essential skills for efficiently preparing and transforming data for analysis and decision-making.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Data Processing and Manipulation
Dieser Kurs ist Teil von Spezialisierung Data Wrangling with Python
Dozent: Di Wu
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Understand the importance of data processing and manipulation in the data analysis pipeline.
Learn techniques to handle missing values and outliers, data reduction, and data scaling and discretization.
Understand the concept of data cube and perform multidimensional aggregation for exploratory analysis.
Kompetenzen, die Sie erwerben
- Kategorie: Python Libraries
- Kategorie: Data Warehousing
- Kategorie: Pandas
- Kategorie: Scaling
- Kategorie: Pivot Table
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
6 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 4 Module
The "Missing Values and Outliers" week focuses on how to handle missing values and detect outliers using the Pandas library. You will learn essential techniques to identify and address missing data effectively, as well as methods to detect and manage outliers in datasets.
Das ist alles enthalten
3 Videos5 Lektüren2 Aufgaben1 Diskussionsthema
The "Data Reduction" week focuses on how to reduce data through sampling and dimensionality reduction using the Pandas library. You will learn essential techniques to obtain manageable subsets of data while preserving meaningful information for analysis and visualization.
Das ist alles enthalten
2 Videos3 Lektüren1 Aufgabe1 Diskussionsthema
The "Scaling and Discretization" week focuses on the importance of data scaling and discretization in the data preprocessing process. You will learn why and how to perform data scaling to normalize variables and handle data with different scales. Additionally, you will explore the concept of data discretization and its application in transforming continuous data into categorical representations.
Das ist alles enthalten
2 Videos3 Lektüren1 Aufgabe1 Diskussionsthema
The "Data Warehouse" week focuses on the concepts and methodologies of organizing data using data cubes and pivot tables in Pandas. You will learn the importance of data warehousing for efficient data management and analysis, as well as how to construct data cubes and pivot tables to facilitate multidimensional data exploration.
Das ist alles enthalten
2 Videos3 Lektüren2 Aufgaben1 Diskussionsthema
Dozent
Empfohlen, wenn Sie sich für Data Analysis interessieren
Board Infinity
University of Michigan
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.