This course introduces the concepts of Artificial Intelligence and Machine learning. We'll discuss machine learning types and tasks, and machine learning algorithms. You'll explore Python as a popular programming language for machine learning solutions, including using some scientific ecosystem packages which will help you implement machine learning.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Developing AI Applications on Azure
Dozent: Ronald J. Daskevich, DCS
47.873 bereits angemeldet
Bei enthalten
(973 Bewertungen)
Empfohlene Erfahrung
Was Sie lernen werden
Define Artificial Intelligence and Machine Language
Describe AI tools and roles, and the Microsoft Team Data Science Process
Work with Azure APIs, including those for vision, language, and search
Create, train, test and deploy your AI model in the cloud
Kompetenzen, die Sie erwerben
- Kategorie: Azure Machine Learning Service
- Kategorie: Python Programming
- Kategorie: Azure Machine Learning Workspace
- Kategorie: Azure AI models
- Kategorie: Microsoft Team Data Sciences Process
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
19 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 5 Module
This module introduces Artificial Intelligence and Machine learning. Next, we talk about machine learning types and tasks. This leads into a discussion of machine learning algorithms. Finally we explore python as a popular language for machine learning solutions and share some scientific ecosystem packages which will help you implement machine learning. By the end of this unit you will be able to implement machine learning models in at least one of the available python machine learning libraries.
Das ist alles enthalten
10 Videos6 Lektüren4 Aufgaben1 Diskussionsthema
This module introduces machine learning tools available in Microsoft Azure. It then looks at standardized approaches developed to help data analytics projects to be successful. Finally, it gives you specific guidance on Microsoft's Team Data Science Approach to include roles and tasks involved with the process. The exercise at the end of this unit points you to Microsoft's documentation to implement this process in their DevOps solution if you don't have your own.
Das ist alles enthalten
9 Videos2 Lektüren3 Aufgaben1 Diskussionsthema
This module introduces you to Microsoft's pretrained and managed machine learning offered as REST API's in their suite of cognitive services. We specifically implement solutions using the computer vision api, the facial recognition api, and do sentiment analysis by calling the natural language service.
Das ist alles enthalten
7 Videos3 Lektüren3 Aufgaben1 Diskussionsthema
This module introduces you to the capabilities of the Azure Machine Learning Service. We explore how to create and then reference an ML workspace. We then talk about how to train a machine learning model using the Azure ML service. We talk about the purpose and role of experiments, runs, and models. Finally, we talk about Azure resources available to train your machine learning models with. Exercises in this unit include creating a workspace, building a compute target, and executing a training run using the Azure ML service.
Das ist alles enthalten
7 Videos3 Lektüren5 Aufgaben
This module covers how to connect to your workspace. Next, we discuss how the model registry works and how to register a trained model locally and from a workspace training run. In addition, we show you the steps to prepare a model for deployment including identifying dependencies, configuring a deployment target, building a container image. Finally, we deploy a trained model as a webservice and test it by sending JSON objects to the API.
Das ist alles enthalten
8 Videos1 Lektüre4 Aufgaben
Dozent
von
Empfohlen, wenn Sie sich für Machine Learning interessieren
LearnQuest
Microsoft
Duke University
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Bewertungen von Lernenden
Zeigt 3 von 973
973 Bewertungen
- 5 stars
65,36 %
- 4 stars
20,96 %
- 3 stars
8,32 %
- 2 stars
2,15 %
- 1 star
3,18 %
Geprüft am 12. Juni 2020
Geprüft am 23. Juni 2020
Geprüft am 7. Juni 2020
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.