Google Cloud
Feature Engineering - 한국어

Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Google Cloud

Feature Engineering - 한국어

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel
Einige einschlägige Kenntnisse erforderlich
Es dauert 8 Stunden
3 Wochen bei 2 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel
Einige einschlägige Kenntnisse erforderlich
Es dauert 8 Stunden
3 Wochen bei 2 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Vertex AI Feature Store에 대해 설명하고 좋은 특성의 필수적인 주요 측면 비교

  • BigQuery ML, Keras, TensorFlow를 사용하여 특성 추출 수행

  • Dataflow 및 Dataprep을 사용해 특성을 전처리하고 파악하는 방법 이해

  • tf.Transform 사용

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Bewertungen

6 Aufgaben

Unterrichtet in Koreanisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 8 Module

이 모듈은 과정 및 과정 목표에 대한 개요를 제공합니다.

Das ist alles enthalten

1 Video

이 모듈에서는 Vertex AI Feature Store를 소개합니다.

Das ist alles enthalten

6 Videos1 Lektüre1 Aufgabe

특성 추출은 ML 프로젝트 빌드 절차에서 가장 오래 걸리고 까다로운 단계인 경우가 많습니다. 특성 추출 절차에서는 원시 데이터로 시작한 후 고유한 전문 분야 지식을 활용하여 머신러닝 알고리즘이 작동하는 특성을 생성합니다. 이 모듈에서는 좋은 특성을 만드는 요소와 ML 모델에서 이러한 특성을 표현하는 방법을 설명합니다.

Das ist alles enthalten

9 Videos1 Lektüre1 Aufgabe

이 모듈에서는 머신러닝과 통계의 차이점과 BigQuery ML 및 Keras 모두에서 특성 추출을 수행하는 방법을 살펴봅니다. 몇 가지 고급 특성 추출 방법도 살펴봅니다.

Das ist alles enthalten

12 Videos1 Lektüre1 Aufgabe3 App-Elemente

이 모듈에서는 Apache Beam의 보완 기술이자 전처리 및 특성 추출을 빌드하고 실행하는 데 도움이 되는 Dataflow에 대해 자세히 알아봅니다.

Das ist alles enthalten

3 Videos1 Lektüre1 Aufgabe

기존의 머신러닝에서 특성 교차는 그다지 중요한 역할을 하지 않았지만 최신 ML 방법에서는 특성 교차가 툴킷에서 매우 중요한 부분을 담당합니다. 이 모듈에서는 어떤 유형의 문제에서 특성 교차가 머신의 학습을 효과적으로 돕는지 알아내는 방법을 배웁니다.

Das ist alles enthalten

5 Videos1 Lektüre1 Aufgabe

TensorFlow Transform(tf.Transform)은 TensorFlow를 사용해 데이터를 전처리할 때 필요한 라이브러리입니다. tf.Transform은 데이터 전체 전달이 필요한 전처리에 유용합니다. 예: - 평균 및 stdev로 입력 값 정규화 - 모든 입력 예에서 값을 확인하여 어휘 정수화 - 관찰된 데이터 배포를 기반으로 입력 버킷화. 이 모듈에서는 tf.Transform의 사용 사례를 살펴봅니다.

Das ist alles enthalten

5 Videos1 Lektüre1 Aufgabe

이 모듈은 특성 추출 과정의 요약입니다.

Das ist alles enthalten

4 Lektüren

Dozent

Google Cloud Training
Google Cloud
1.664 Kurse2.751.510 Lernende

von

Google Cloud

Empfohlen, wenn Sie sich für Machine Learning interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen