This course introduces the necessary concepts and common techniques for analyzing data. The primary emphasis is on the process of data analysis, including data preparation, descriptive analytics, model training, and result interpretation. The process starts with removing distractions and anomalies, followed by discovering insights, formulating propositions, validating evidence, and finally building professional-grade solutions. Following the process properly, regularly, and transparently brings credibility and increases the impact of the results.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Empfohlene Erfahrung
Was Sie lernen werden
1. Apply appropriate techniques for generating insights from data.
2. Present actionable solutions with confidence to the business stakeholders.
Kompetenzen, die Sie erwerben
- Kategorie: Association Rule Learning
- Kategorie: Logistic Regression
- Kategorie: Decision Tree Learning
- Kategorie: Linear Regression
- Kategorie: K-Means Clustering
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
32 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 9 Module
Welcome to Data Preparation and Analysis! Module 1 guides students through the art of crafting informative and visually appealing histograms, a fundamental aspect of data visualization. Students will learn techniques for measuring the location and scale of data, understanding the origins and impacts of noise and missing values in datasets. This module also introduces the CRISP-DM Process, a structured approach to data mining, along with Gartner's Analytics Ascendancy Model for advanced data analysis. Additionally, students will explore the distinction between raw data and processed information, a key concept for effective data interpretation and decision-making.
Das ist alles enthalten
10 Videos7 Lektüren4 Aufgaben1 Diskussionsthema1 Unbewertetes Labor
Module 2 delves into the intricacies of statistical analysis, beginning with a thorough understanding of the p-value concept and its significance as a Type I Error indicator. Students will learn to apply statistical tests in Python to identify significantly correlated features, exploring various correlation metrics tailored for categorical, mixed-type, and continuous features. This module emphasizes practical application, equipping students with the skills to calculate and interpret these metrics using Python, thereby enhancing their ability to conduct sophisticated data analysis and draw meaningful conclusions from complex datasets.
Das ist alles enthalten
7 Videos5 Lektüren4 Aufgaben1 Unbewertetes Labor
Module 3 offers a deep dive into the world of Association Rules, teaching students how to improvise these rules for identifying valuable feature combinations that generate specific label values. Learners will master setting appropriate thresholds for Support and Confidence and gain a comprehensive understanding of the Apriori Algorithm and the significance of Frequent Itemsets within it. This module covers the calculation of common metrics for Association Rules, familiarizing students with the relevant terminology. Additionally, learners will explore the practical application of Association Rules in Market Basket Analysis, including strategies for cross-selling, up-selling, and product bundling, equipping them with valuable skills for advanced data-driven decision making in business contexts.
Das ist alles enthalten
7 Videos5 Lektüren3 Aufgaben1 Unbewertetes Labor
In Module 4, students will learn how to describe and interpret profiles of clusters, gaining proficiency in deploying the K-Means and K-Modes clustering algorithms. They will explore the application of Recency, Frequency, and Monetary (RFM) Analysis to identify the most valuable customers in retail business settings. The module also covers the technique of Simple Random Sampling with the option of incorporating stratification variables, enhancing the precision of data analysis. Furthermore, it emphasizes the importance of objectively validating models using a testing partition, ensuring the reliability and effectiveness of the analytical models in real-world scenarios.
Das ist alles enthalten
8 Videos5 Lektüren4 Aufgaben1 Unbewertetes Labor
This module delves into feature importance analysis in machine learning, covering Shapley Values, feature selection methods, statistical evaluation, feature interaction, aliasing, and the Least Squares Algorithm. Students will be able to master these concepts to build robust and interpretable models.
Das ist alles enthalten
8 Videos5 Lektüren4 Aufgaben1 Unbewertetes Labor
In Module 6, students will master the art of feature selection in machine learning by exploring the Forward and Backward Selection Method, the All-Possible Subsets Method, and the concept of complete and quasi-complete separation. Students will also discover association rules for identifying separations, interpret model parameters and predicted probabilities, and delve into the concepts of maximum likelihood estimation, odds, and odds ratios.
Das ist alles enthalten
6 Videos5 Lektüren4 Aufgaben1 Unbewertetes Labor
Module 7 will equip students wth the ability to harness the power of tree-based models to uncover hidden patterns in your data. Students will be able to describe clusters effectively, intelligently set algorithm parameters, construct business rules from tree results, and utilize variance metrics, entropy values, and Gini indices for optimal tree construction.
Das ist alles enthalten
7 Videos5 Lektüren4 Aufgaben1 Unbewertetes Labor
Module 8 delves into the realm of evaluation metrics for machine learning models. Students will master the concepts of precision and recall curves, lift curves, and receiver operating characteristics (ROC) curves. Additionally, students will obtain the ability to discover methods for calculating probability thresholds using Kolmogorov-Smirnov statistics and F1 scores. They will be able to explore metrics like misclassification rate, area under the curve (AUC), and root mean squared error (RMSE), along with techniques for computing RMSE and detecting severely misfitted observations using model-specific residuals.
Das ist alles enthalten
8 Videos5 Lektüren4 Aufgaben1 Unbewertetes Labor
This module contains the summative course assessment that has been designed to evaluate your understanding of the course material and assess your ability to apply the knowledge you have acquired throughout the course. Be sure to review the course material thoroughly before taking the assessment.
Das ist alles enthalten
1 Aufgabe
Empfohlen, wenn Sie sich für Data Analysis interessieren
University of Colorado Boulder
Auf einen Abschluss hinarbeiten
Dieses Kurs ist Teil des/der folgenden Studiengangs/Studiengänge, die von Illinois Techangeboten werden. Wenn Sie zugelassen werden und sich immatrikulieren, können Ihre abgeschlossenen Kurse auf Ihren Studienabschluss angerechnet werden und Ihre Fortschritte können mit Ihnen übertragen werden.¹
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.