Illinois Tech
Data Preparation and Analysis

Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Illinois Tech

Data Preparation and Analysis

Ming-Long Lam
Jawahar Panchal

Dozenten: Ming-Long Lam

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 79 Stunden
3 Wochen bei 26 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Auf einen Abschluss hinarbeiten
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 79 Stunden
3 Wochen bei 26 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Auf einen Abschluss hinarbeiten

Was Sie lernen werden

  • 1. Apply appropriate techniques for generating insights from data.

    2. Present actionable solutions with confidence to the business stakeholders.

Kompetenzen, die Sie erwerben

  • Kategorie: Association Rule Learning
  • Kategorie: Logistic Regression
  • Kategorie: Decision Tree Learning
  • Kategorie: Linear Regression
  • Kategorie: K-Means Clustering

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Bewertungen

32 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 9 Module

Welcome to Data Preparation and Analysis! Module 1 guides students through the art of crafting informative and visually appealing histograms, a fundamental aspect of data visualization. Students will learn techniques for measuring the location and scale of data, understanding the origins and impacts of noise and missing values in datasets. This module also introduces the CRISP-DM Process, a structured approach to data mining, along with Gartner's Analytics Ascendancy Model for advanced data analysis. Additionally, students will explore the distinction between raw data and processed information, a key concept for effective data interpretation and decision-making.

Das ist alles enthalten

10 Videos7 Lektüren4 Aufgaben1 Diskussionsthema1 Unbewertetes Labor

Module 2 delves into the intricacies of statistical analysis, beginning with a thorough understanding of the p-value concept and its significance as a Type I Error indicator. Students will learn to apply statistical tests in Python to identify significantly correlated features, exploring various correlation metrics tailored for categorical, mixed-type, and continuous features. This module emphasizes practical application, equipping students with the skills to calculate and interpret these metrics using Python, thereby enhancing their ability to conduct sophisticated data analysis and draw meaningful conclusions from complex datasets.

Das ist alles enthalten

7 Videos5 Lektüren4 Aufgaben1 Unbewertetes Labor

Module 3 offers a deep dive into the world of Association Rules, teaching students how to improvise these rules for identifying valuable feature combinations that generate specific label values. Learners will master setting appropriate thresholds for Support and Confidence and gain a comprehensive understanding of the Apriori Algorithm and the significance of Frequent Itemsets within it. This module covers the calculation of common metrics for Association Rules, familiarizing students with the relevant terminology. Additionally, learners will explore the practical application of Association Rules in Market Basket Analysis, including strategies for cross-selling, up-selling, and product bundling, equipping them with valuable skills for advanced data-driven decision making in business contexts.

Das ist alles enthalten

7 Videos5 Lektüren3 Aufgaben1 Unbewertetes Labor

In Module 4, students will learn how to describe and interpret profiles of clusters, gaining proficiency in deploying the K-Means and K-Modes clustering algorithms. They will explore the application of Recency, Frequency, and Monetary (RFM) Analysis to identify the most valuable customers in retail business settings. The module also covers the technique of Simple Random Sampling with the option of incorporating stratification variables, enhancing the precision of data analysis. Furthermore, it emphasizes the importance of objectively validating models using a testing partition, ensuring the reliability and effectiveness of the analytical models in real-world scenarios.

Das ist alles enthalten

8 Videos5 Lektüren4 Aufgaben1 Unbewertetes Labor

This module delves into feature importance analysis in machine learning, covering Shapley Values, feature selection methods, statistical evaluation, feature interaction, aliasing, and the Least Squares Algorithm. Students will be able to master these concepts to build robust and interpretable models.

Das ist alles enthalten

8 Videos5 Lektüren4 Aufgaben1 Unbewertetes Labor

In Module 6, students will master the art of feature selection in machine learning by exploring the Forward and Backward Selection Method, the All-Possible Subsets Method, and the concept of complete and quasi-complete separation. Students will also discover association rules for identifying separations, interpret model parameters and predicted probabilities, and delve into the concepts of maximum likelihood estimation, odds, and odds ratios.

Das ist alles enthalten

6 Videos5 Lektüren4 Aufgaben1 Unbewertetes Labor

Module 7 will equip students wth the ability to harness the power of tree-based models to uncover hidden patterns in your data. Students will be able to describe clusters effectively, intelligently set algorithm parameters, construct business rules from tree results, and utilize variance metrics, entropy values, and Gini indices for optimal tree construction.

Das ist alles enthalten

7 Videos5 Lektüren4 Aufgaben1 Unbewertetes Labor

Module 8 delves into the realm of evaluation metrics for machine learning models. Students will master the concepts of precision and recall curves, lift curves, and receiver operating characteristics (ROC) curves. Additionally, students will obtain the ability to discover methods for calculating probability thresholds using Kolmogorov-Smirnov statistics and F1 scores. They will be able to explore metrics like misclassification rate, area under the curve (AUC), and root mean squared error (RMSE), along with techniques for computing RMSE and detecting severely misfitted observations using model-specific residuals.

Das ist alles enthalten

8 Videos5 Lektüren4 Aufgaben1 Unbewertetes Labor

This module contains the summative course assessment that has been designed to evaluate your understanding of the course material and assess your ability to apply the knowledge you have acquired throughout the course. Be sure to review the course material thoroughly before taking the assessment.

Das ist alles enthalten

1 Aufgabe

Dozenten

Ming-Long Lam
Illinois Tech
1 Kurs921 Lernende
Jawahar Panchal
Illinois Tech
1 Kurs921 Lernende

von

Illinois Tech

Empfohlen, wenn Sie sich für Data Analysis interessieren

Auf einen Abschluss hinarbeiten

Dieses Kurs ist Teil des/der folgenden Studiengangs/Studiengänge, die von Illinois Techangeboten werden. Wenn Sie zugelassen werden und sich immatrikulieren, können Ihre abgeschlossenen Kurse auf Ihren Studienabschluss angerechnet werden und Ihre Fortschritte können mit Ihnen übertragen werden.¹

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen