"Introduction to Predictive Analytics and Advanced Predictive Analytics Using Python" is specially designed to enhance your skills in building, refining, and implementing predictive models using Python. This course serves as a comprehensive introduction to predictive analytics, beginning with the fundamentals of linear and logistic regression. These models are the cornerstone of predictive analytics, enabling you to forecast future events by learning from historical data. We cover a bit of the theory behind these models, but in particular, their application in real-world scenarios and the process of evaluating their performance to ensure accuracy and reliability. As the course progresses, we delve deeper into the realm of machine learning with a focus on decision trees and random forests. These techniques represent a more advanced aspect of supervised learning, offering powerful tools for both classification and regression tasks. Through practical examples and hands-on exercises, you'll learn how to build these models, understand their intricacies, and apply them to complex datasets to identify patterns and make predictions. Additionally, we introduce the concepts of unsupervised learning and clustering, broadening your analytics toolkit, and providing you with the skills to tackle data without predefined labels or categories. By the end of this course, you'll not only have a thorough understanding of various predictive analytics techniques, but also be capable of applying these techniques to solve real-world problems, setting the stage for continued growth and exploration in the field of data analytics.



Intro to Predictive Analytics Using Python
Dieser Kurs ist Teil von Spezialisierung How to Use Data

Dozent: Brandon Krakowsky
Bei enthalten
Empfohlene Erfahrung
Empfohlene Erfahrung
Was Sie lernen werden
Implement data preprocessing and model training procedures for regression.
Interpret feature importance in decision trees and random forests.
Explain the difference between supervised and unsupervised learning.
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Februar 2025
7 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage


Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

In diesem Kurs gibt es 3 Module
Module 1 introduces you to predictive analytics, covering essential models such as linear and logistic regression. This is where you start to learn how to forecast future trends from historical data.
Das ist alles enthalten
20 Videos4 Lektüren2 Aufgaben2 App-Elemente
Module 2 expands your knowledge into decision trees and random forests, offering a deeper dive into more complex supervised learning models that enhance your predictive analytics capabilities.
Das ist alles enthalten
16 Videos4 Lektüren2 Aufgaben2 App-Elemente
Module 3 explores unsupervised learning and clustering, guiding you through the nuances of model comparison and the art of identifying patterns without predefined labels.
Das ist alles enthalten
8 Videos4 Lektüren3 Aufgaben1 App-Element
Dozent

Empfohlen, wenn Sie sich für Data Analysis interessieren
University of California San Diego
Edureka
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.