The University of Sydney
Introduction to Linear Algebra

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
The University of Sydney

Introduction to Linear Algebra

David Easdown

Dozent: David Easdown

TOP-LEHRKRAFT

4.767 bereits angemeldet

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
4.8

(19 Bewertungen)

Stufe Mittel
Einige einschlägige Kenntnisse erforderlich
Es dauert 36 Stunden
3 Wochen bei 12 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
4.8

(19 Bewertungen)

Stufe Mittel
Einige einschlägige Kenntnisse erforderlich
Es dauert 36 Stunden
3 Wochen bei 12 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Bewertungen

28 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 4 Module

This module introduces and explores the useful and elegant arithmetic of geometric vectors, regarded as directed line segments, which move about freely in the plane and in space. Objects in this arithmetic are ubiquitous throughout the physical world, modelling vector quantities. Students acquire tools that enable them to explore precise geometrical relationships between objects, prove difficult theorems and solve optimisation problems. This arithmetic forms a prototype for the general and abstract theory of vector spaces, developing students’ intuition and preparing them for advanced courses on linear algebra.

Das ist alles enthalten

10 Videos11 Lektüren10 Aufgaben

This module introduces and develops fluency with lines and planes in space, represented by vector and Cartesian equations. Students learn how to exploit the arithmetic of geometric vectors to solve difficult optimisation problems such as finding the closest point to a plane or finding the closest points on a pair of skew lines. The module introduces systems of linear equations and then develops the method of Gaussian elimination, using elementary row operations, followed by back substitution, to express solutions in terms of parameters. Systems of equations are also explored and solved using modular arithmetic with respect to a given prime number.

Das ist alles enthalten

8 Videos6 Lektüren7 Aufgaben

This module introduces matrix arithmetic and the theory of determinants. Students first learn how to add matrices of the same size and how to multiply by a scalar. They then learn how to multiply matrices of compatible sizes, using cascades of dot products of rows with columns. This is described succinctly using Sigma notation, which is then used to prove associativity of matrix multiplication. Students learn about elementary matrices, which are basic building blocks in matrix arithmetic, closely related to elementary row operations used in Gaussian elimination. Students learn about matrix inverses and how to find them. Students learn about determinants and their properties, including the multiplicative property and a simple criterion for recognising invertibility of a matrix. Students see applications to cross products of vectors and for exploring spatial relationships between points and triangles.

Das ist alles enthalten

11 Videos5 Lektüren5 Aufgaben

This module continues the development of matrix arithmetic by introducing eigenvalues and associated eigenvectors. Interpreted geometrically, these allow one to find directions in which a given linear operator associated with a matrix moves vectors in straight lines. This leads to the technique of diagonalisation, enabling one to solve difficult problems in matrix arithmetic, including finding formulae for powers of a given square matrix. This has many applications, including, for example, in exploring the behaviour of a Markov process described by a stochastic matrix, the mathematics of which underlies search engines on the internet. Eigenvalues can be found, in principle, by solving the characteristic equation of a matrix. Associated eigenvectors can then be found by solving an associated homogeneous system of equations. In practice, there are iterative numerical techniques for finding approximations of eigenvalues and eigenvectors, using a technique associated with Perron’s Theorem. Diagonalisation is a manifestation of the general Conjugation Principle, explored in different contexts. Linear transformations are introduced, focusing on transformation of the plane. Rotations and reflections of the plane combine to form the two-dimensional orthogonal group. Scalar dilations and rotations combine to form a copy of the field of complex numbers. A sketch of Smale’s proof of the Fundamental Theorem of Algebra is given, which says that any nonconstant polynomial with complex coefficients has a complex root, so that all square matrices have eigenvalues, when working over the field of complex numbers.

Das ist alles enthalten

13 Videos6 Lektüren6 Aufgaben

Dozent

Lehrkraftbewertungen
5.0 (8 Bewertungen)
David Easdown

TOP-LEHRKRAFT

The University of Sydney
3 Kurse251.477 Lernende

von

Empfohlen, wenn Sie sich für Math and Logic interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“

Bewertungen von Lernenden

Zeigt 3 von 19

4.8

19 Bewertungen

  • 5 stars

    84,21 %

  • 4 stars

    15,78 %

  • 3 stars

    0 %

  • 2 stars

    0 %

  • 1 star

    0 %

CL
4

Geprüft am 7. Jan. 2024

MI
5

Geprüft am 6. Juli 2024

EB
5

Geprüft am 18. Mai 2024

Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen