Johns Hopkins University
Introduction to Neural Networks

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Johns Hopkins University

Introduction to Neural Networks

Zerotti Woods

Dozent: Zerotti Woods

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 19 Stunden
3 Wochen bei 6 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 19 Stunden
3 Wochen bei 6 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Understand the foundational mathematics and key concepts driving neural networks and machine learning.

  • Analyze and apply machine learning algorithms, optimization methods, and loss functions to train and evaluate models effectively.

  • Explore the design and structure of feedforward neural networks, using gradient descent to optimize and train deep models.

  • Investigate convolutional neural networks, their elements, and how they apply to real-world problems like image processing and computer vision.

Kompetenzen, die Sie erwerben

  • Kategorie: Mathematical Foundations for Deep Learning
  • Kategorie: Optimization Techniques for Machine Learning
  • Kategorie: Regularization Methods
  • Kategorie: Convolutional Neural Network (CNN) Design
  • Kategorie: Design and Training of Feedforward Neural Networks

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Dezember 2024

Bewertungen

10 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung Foundations of Neural Networks
Wenn Sie sich für diesen Kurs anmelden, werden Sie auch für diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage
Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 6 Module

This course provides a comprehensive overview of the foundational mathematics and concepts behind Deep Learning and Machine Learning. Students will analyze various Machine Learning Algorithms, focusing on Optimization Techniques and Regularization Methods, while evaluating their effectiveness. Practical applications will include training algorithms using Gradient Descent and assessing their performance. The course also covers the structure and data elements of Convolutional Neural Networks (CNNs), emphasizing their design for specific tasks. Lastly, students will explore current research and propose future directions in Regularization and CNNs, contributing to advancements in Deep Learning methodologies.

Das ist alles enthalten

2 Lektüren

This module will lay the foundations that are needed to be successful in the field of Deep Learning. It will also introduce motivation for the field as well as discuss the history of the field.

Das ist alles enthalten

3 Videos1 Lektüre2 Aufgaben1 Unbewertetes Labor

This module will discuss the fundamentals of Machine Learning. You will explore different aspects of Machine Learning Algorithms and what is needed to create an algorithm.

Das ist alles enthalten

1 Video1 Lektüre2 Aufgaben1 Unbewertetes Labor

This module will discuss the building blocks of Deep Feedforward Neural Networks. Students will explore different parts of Deep Feedforward NN and what is needed to create and train the algorithms.

Das ist alles enthalten

1 Video1 Lektüre2 Aufgaben1 Unbewertetes Labor

This module will discuss the regularization in Deep Feedforward Neural Networks. Learners will explore the reasons for regularization along with different techniques.

Das ist alles enthalten

1 Video1 Lektüre2 Aufgaben1 Unbewertetes Labor

This module will discuss Convolutional Neural Networks. Students will explore the reasons for regularization along with different techniques.

Das ist alles enthalten

1 Video1 Lektüre2 Aufgaben1 Unbewertetes Labor

Dozent

Zerotti Woods
Johns Hopkins University
3 Kurse51 Lernende

von

Empfohlen, wenn Sie sich für Algorithms interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen