The course "Introduction to Neural Networks" provides a comprehensive introduction to the foundational concepts of neural networks, equipping learners with essential skills in deep learning and machine learning. Dive into the mathematics that drive neural network algorithms and explore the optimization techniques that enhance their performance. Gain hands-on experience training machine learning models using gradient descent and evaluate their effectiveness in practical scenarios.
Introduction to Neural Networks
Dieser Kurs ist Teil von Spezialisierung Foundations of Neural Networks
Dozent: Zerotti Woods
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Understand the foundational mathematics and key concepts driving neural networks and machine learning.
Analyze and apply machine learning algorithms, optimization methods, and loss functions to train and evaluate models effectively.
Explore the design and structure of feedforward neural networks, using gradient descent to optimize and train deep models.
Investigate convolutional neural networks, their elements, and how they apply to real-world problems like image processing and computer vision.
Kompetenzen, die Sie erwerben
- Kategorie: Mathematical Foundations for Deep Learning
- Kategorie: Optimization Techniques for Machine Learning
- Kategorie: Regularization Methods
- Kategorie: Convolutional Neural Network (CNN) Design
- Kategorie: Design and Training of Feedforward Neural Networks
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
Dezember 2024
10 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 6 Module
This course provides a comprehensive overview of the foundational mathematics and concepts behind Deep Learning and Machine Learning. Students will analyze various Machine Learning Algorithms, focusing on Optimization Techniques and Regularization Methods, while evaluating their effectiveness. Practical applications will include training algorithms using Gradient Descent and assessing their performance. The course also covers the structure and data elements of Convolutional Neural Networks (CNNs), emphasizing their design for specific tasks. Lastly, students will explore current research and propose future directions in Regularization and CNNs, contributing to advancements in Deep Learning methodologies.
Das ist alles enthalten
2 Lektüren
This module will lay the foundations that are needed to be successful in the field of Deep Learning. It will also introduce motivation for the field as well as discuss the history of the field.
Das ist alles enthalten
3 Videos1 Lektüre2 Aufgaben1 Unbewertetes Labor
This module will discuss the fundamentals of Machine Learning. You will explore different aspects of Machine Learning Algorithms and what is needed to create an algorithm.
Das ist alles enthalten
1 Video1 Lektüre2 Aufgaben1 Unbewertetes Labor
This module will discuss the building blocks of Deep Feedforward Neural Networks. Students will explore different parts of Deep Feedforward NN and what is needed to create and train the algorithms.
Das ist alles enthalten
1 Video1 Lektüre2 Aufgaben1 Unbewertetes Labor
This module will discuss the regularization in Deep Feedforward Neural Networks. Learners will explore the reasons for regularization along with different techniques.
Das ist alles enthalten
1 Video1 Lektüre2 Aufgaben1 Unbewertetes Labor
This module will discuss Convolutional Neural Networks. Students will explore the reasons for regularization along with different techniques.
Das ist alles enthalten
1 Video1 Lektüre2 Aufgaben1 Unbewertetes Labor
Dozent
Empfohlen, wenn Sie sich für Algorithms interessieren
Johns Hopkins University
University of Colorado Boulder
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.