The Chinese University of Hong Kong
离散优化建模基础篇 Basic Modeling for Discrete Optimization

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
The Chinese University of Hong Kong

离散优化建模基础篇 Basic Modeling for Discrete Optimization

Prof. Jimmy Ho Man Lee
Prof. Peter James Stuckey

Dozenten: Prof. Jimmy Ho Man Lee

TOP-LEHRKRAFT

3.445 bereits angemeldet

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
4.8

(36 Bewertungen)

Stufe Mittel
Einige einschlägige Kenntnisse erforderlich
Es dauert 27 Stunden
3 Wochen bei 9 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
4.8

(36 Bewertungen)

Stufe Mittel
Einige einschlägige Kenntnisse erforderlich
Es dauert 27 Stunden
3 Wochen bei 9 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Unterrichtet in Chinesisch (vereinfacht)

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 4 Module

在第一单元中,你将学习到MiniZinc的基础知识。它是一门用于离散优化问题的高级建模语言。通过结合简洁的MiniZinc语言和业界开源项目强大的求解技术,你将学会如何轻松地解决一些应用问题,比如背包问题,涂色问题,生产规划和覆面算问题。这个模块的学习目标是: (1) 建立一个基本的MiniZinc模型。 (2)理解一个由他人创建的简单MiniZinc模型。

Das ist alles enthalten

11 Videos5 Lektüren1 Programmieraufgabe

在这个单元中,你将学到如何对集合选择问题进行建模。特别是你将学习到如何利用不同的方法来表示没有势约束的,固定势的,或有界势的集合变量。在建模时,你还需要确保所有的模型决策都是有效的决策,而每一个有效的决策刚好对应一个模型决策。这个模块的学习目标是:(1) 建立一个MiniZinc模型来选择一个集合 。 (2)选择一种最适合的表示方式来表示集合。

Das ist alles enthalten

6 Videos1 Lektüre1 Programmieraufgabe

在这个单元中,你将学习到如何对纯分配问题和划分问题建模,而实际上它们都是函数建模问题。这些问题可以应用到值勤安排或者约束聚类问题中。而在建模技术上,你将看到共同子表达式消除和中间变量的威力,还会初次接触到全局势约束。另外,MiniZinc还提供了约束来去除值对称。这个模块的学习目标是:(1) 创建MiniZinc模型来决定一个函数 。 (2)分析问题来洞察问题中是否含有赋值的子结构 。 (3)创建基本的值班模型。 (4)发现问题是否需要划分一个集合 。

Das ist alles enthalten

7 Videos1 Lektüre1 Programmieraufgabe

在最后一个单元中,你将会看到离散优化问题可以如何通过不同的视角来切入,和如何从不同的视角来建立完全不同的模型。每一个视角都有优劣,而实际上不同的视角的模型可以结合起来互补。 这个模块的学习目标是:(1) 创建可以用两种不同视角的决策变量的MiniZinc模型。 (2)决定使用哪一种视角(或者组合视角)的决策变量对某一类问题更适合。

Das ist alles enthalten

7 Videos2 Lektüren1 Programmieraufgabe

Dozenten

Lehrkraftbewertungen
5.0 (5 Bewertungen)
Prof. Jimmy Ho Man Lee

TOP-LEHRKRAFT

The Chinese University of Hong Kong
6 Kurse43.785 Lernende

von

Empfohlen, wenn Sie sich für Software Development interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“

Bewertungen von Lernenden

4.8

36 Bewertungen

  • 5 stars

    89,18 %

  • 4 stars

    5,40 %

  • 3 stars

    2,70 %

  • 2 stars

    0 %

  • 1 star

    2,70 %

Zeigt 3 von 36 an

SY
5

Geprüft am 24. Feb. 2017

Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen