SAS
Machine Learning Under the Hood: The Technical Tips, Tricks, and Pitfalls

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
SAS

Machine Learning Under the Hood: The Technical Tips, Tricks, and Pitfalls

Eric Siegel

Dozent: Eric Siegel

4.892 bereits angemeldet

Enthalten inCoursera Plus

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
4.9

(64 Bewertungen)

Stufe Anfänger

Empfohlene Erfahrung

Es dauert 17 Stunden
3 Wochen bei 5 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
4.9

(64 Bewertungen)

Stufe Anfänger

Empfohlene Erfahrung

Es dauert 17 Stunden
3 Wochen bei 5 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Participate in the application of machine learning, helping select between and evaluate technical approaches

  • Interpret a predictive model for a manager or executive, explaining how it works and how well it predicts

  • Circumvent the most common technical pitfalls of machine learning

  • Screen a predictive model for bias against protected classes – aka AI ethics

Kompetenzen, die Sie erwerben

  • Kategorie: Predictive Analytics
  • Kategorie: Artificial Intelligence (AI)
  • Kategorie: Data Science
  • Kategorie: Machine Learning
  • Kategorie: Machine Learning (ML) Algorithms

Wichtige Details

Erwerben Sie ein Karrierezertifikat.

Zu Ihrem LinkedIn-Profil hinzufügen

Bewertungen

44 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung Machine Learning Rock Star – the End-to-End Practice
Wenn Sie sich für diesen Kurs anmelden, werden Sie auch für diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage
Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 4 Module

In what way is bigger data more dangerous? How do we avoid being fooled by random noise and ensure scientific discoveries are trustworthy? This module covers the fundamental ways in which machine learning works – and doesn't work. First, we'll cover three prevalent, heartbreaking pitfalls: overfitting, p-hacking, and presuming causation when we have only ascertained correlation. Then we'll establish the foundational principles behind the design of machine learning methods.

Das ist alles enthalten

10 Videos6 Lektüren11 Aufgaben1 peer review2 Diskussionsthemen

This module covers four standard machine learning methods: decision trees, Naive Bayes, linear regression, and logistic regression. We'll show you how they work, checking their predictive performance over example datasets and visualizing their decision boundaries as a way to compare and contrast their capabilities. You'll also see how to evaluate these models in terms of lift and profit, and why improving model probability estimates is so important.

Das ist alles enthalten

12 Videos1 Lektüre11 Aufgaben2 App-Elemente2 Diskussionsthemen

When should you turn to deep learning, the leading advanced machine learning method, and when is its complexity overkill? And is there a way to advance model capability and performance that's elegant and simple, without involving the complexity of neural networks? In this module, we'll cover more advanced modeling methods, including neural networks, deep learning, and ensemble models. Then we'll compare and contrast the full range of modeling methods, and we'll overview the many machine learning software tool options you have at your disposal. We'll then turn to a special, advanced method called uplift modeling (aka persuasion modeling), which goes beyond predicting an outcome to actually predicting the influence that a decision would have on that outcome. We'll explore the marketing applications of uplift modeling and see success stories from the likes of US Bank and President Obama's 2012 reelection campaign.

Das ist alles enthalten

16 Videos2 Lektüren14 Aufgaben2 App-Elemente2 Diskussionsthemen

Crime-predicting models cannot on their own realize racial equity. It turns out that models that are racially equitable in one sense are not in another. This is often referred to as machine bias. This quandary also applies for other kinds of consequential decisions driven by predictive models, including loan approvals, insurance pricing, HR decisions, and medical triage. This module dives deep into understanding the machine bias conundrum and what recourses could be considered in response to it. We'll also ramp up on a related, emerging movement in support of model transparency, explainable machine learning, and the right to explanation. We'll then wrap up the overall three-course specialization with a summary of the ethical issues, the technical pitfalls, and your options for continuing your learning and career path in machine learning.

Das ist alles enthalten

7 Videos8 Lektüren8 Aufgaben2 Diskussionsthemen

Dozent

Lehrkraftbewertungen
4.8 (18 Bewertungen)
Eric Siegel
SAS
5 Kurse16.326 Lernende

von

SAS

Empfohlen, wenn Sie sich für Machine Learning interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“

Bewertungen von Lernenden

Zeigt 3 von 64

4.9

64 Bewertungen

  • 5 stars

    90,62 %

  • 4 stars

    7,81 %

  • 3 stars

    0 %

  • 2 stars

    1,56 %

  • 1 star

    0 %

EQ
5

Geprüft am 24. Sep. 2020

YA
5

Geprüft am 15. Mai 2023

OK
5

Geprüft am 24. Aug. 2020

Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen