This advanced Pandas course delves deep into date-time manipulation, covering Timestamps, DatetimeIndex objects, and pd.date_range for effective time series handling.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Advanced Data Analysis and Visualization with Pandas
Dieser Kurs ist Teil von Spezialisierung Data Analysis with Pandas and Python
Dozent: Packt - Course Instructors
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Demonstrate proficiency in exporting and importing data in CSV and Excel formats using Pandas.
Create and customize data visualizations using Matplotlib to effectively present insights.
Adjust Pandas settings and parameters to optimize data analysis for specific needs.
Apply advanced Pandas techniques to streamline data workflows and improve efficiency in data handling and analysis.
Kompetenzen, die Sie erwerben
- Kategorie: Pandas Excel Integration
- Kategorie: Python Matplotlib
- Kategorie: Advanced Pandas
- Kategorie: Pandas Visualization
- Kategorie: Python Data Analysis
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
August 2024
6 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 5 Module
In this module, we will explore how to handle dates and times in Pandas, starting with an introduction to the concepts and a review of Python's datetime module. You will learn to utilize Timestamp and DatetimeIndex objects for manipulating date-time data and create ranges of dates using the pd.date_range function. We will cover accessing date and time properties using the dt attribute, selecting DataFrame rows based on date-time indexes, and performing time-based arithmetic operations with the DateOffset object. Additionally, you'll master specialized date offsets and understand the concept of timedeltas for representing durations of time.
Das ist alles enthalten
8 Videos2 Lektüren1 Aufgabe
In this module, we will explore input and output operations in Pandas, starting with an overview of essential data exchange techniques. You will learn how to export DataFrames to CSV files, a common format for data sharing. We will guide you through installing the openpyxl library to enable reading and writing Excel files in Pandas. Additionally, you'll master importing data from Excel files into Pandas and exporting DataFrames to Excel for effective data reporting and sharing.
Das ist alles enthalten
5 Videos1 Aufgabe
In this module, we will delve into data visualization techniques using Pandas and Matplotlib. You will begin with installing the Matplotlib library, a crucial tool for creating diverse visualizations in Python. We will explore the plot method in Pandas for basic line plots and demonstrate how to modify plot aesthetics using templates. Additionally, you'll learn to create bar charts for comparing groups or tracking changes over time, and construct pie charts to effectively display proportions of a whole.
Das ist alles enthalten
5 Videos1 Aufgabe
In this module, we will explore how to customize Pandas' behavior and output through various options and settings. You will learn to change Pandas options using attributes, adjusting settings to suit different analysis needs. We will also cover how to change options using functions, providing greater flexibility and control over your data analysis environment. Additionally, you'll understand the precision option to control the output display precision of floating-point numbers, ensuring data clarity and readability.
Das ist alles enthalten
4 Videos1 Aufgabe
In this module, we will wrap up the course by summarizing the key concepts and techniques you've learned. We'll reinforce the comprehensive skill set you have acquired in data analysis with Pandas and Python, providing final insights and encouragement for your continued learning and application of these skills in real-world scenarios.
Das ist alles enthalten
1 Video1 Lektüre2 Aufgaben
Dozent
von
Empfohlen, wenn Sie sich für Data Analysis interessieren
University of Illinois Urbana-Champaign
Coursera Project Network
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.