Packt
Building and Training Neural Networks with PyTorch

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Packt

Building and Training Neural Networks with PyTorch

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 7 Stunden
3 Wochen bei 2 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 7 Stunden
3 Wochen bei 2 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Build and train neural networks using PyTorch for various tasks.

  • Implement classification models with multi-class, multi-label datasets, and CNNs for image and audio classification.

  • Apply object detection techniques using the YOLO algorithm.

  • Explore neural style transfer, transfer learning, and implement RNNs and LSTM networks.

Kompetenzen, die Sie erwerben

  • Kategorie: Recurrent Neural Network (RNN)
  • Kategorie: PyTorch (Machine Learning Library)
  • Kategorie: CNN
  • Kategorie: YOLO
  • Kategorie: Classification Models

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

September 2024

Bewertungen

4 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung PyTorch Ultimate 2024 - From Basics to Cutting-Edge
Wenn Sie sich für diesen Kurs anmelden, werden Sie auch für diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage
Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 7 Module

In this module, we will delve into the realm of classification models, focusing on their types, evaluation metrics, and implementation. You will learn about key concepts such as the confusion matrix and ROC curve, and engage in practical exercises to build and evaluate multi-class classification models.

Das ist alles enthalten

16 Videos2 Lektüren

In this module, we will explore the power of convolutional neural networks (CNNs) in image classification tasks. You will learn about the CNN architecture, preprocess images for optimal results, and gain hands-on experience in implementing binary and multi-class image classification models.

Das ist alles enthalten

11 Videos

In this module, we will focus on using convolutional neural networks for audio classification. You will get a comprehensive introduction to the topic, learn how to conduct exploratory data analysis on audio data, and engage in practical exercises to build and evaluate your own audio classification models.

Das ist alles enthalten

5 Videos1 Aufgabe

In this module, we will dive into object detection using convolutional neural networks. You will learn about essential accuracy metrics, implement popular object detection algorithms like YOLO, and utilize GPU resources for training and inference to build robust object detection models.

Das ist alles enthalten

13 Videos

In this module, we will cover the fascinating topic of neural style transfer. You will understand the underlying principles, implement style transfer algorithms through coding, and explore various creative applications to transform images in unique ways.

Das ist alles enthalten

3 Videos1 Aufgabe

In this module, we will delve into pre-trained networks and transfer learning. You will learn how to leverage pre-trained models, implement transfer learning techniques through coding exercises, and understand the advantages of applying these concepts to various machine learning tasks.

Das ist alles enthalten

3 Videos

In this module, we will introduce recurrent neural networks (RNNs) and their applications. You will explore the basics of RNNs, implement Long Short-Term Memory (LSTM) networks through practical coding exercises, and engage in tasks designed to deepen your understanding of these powerful models.

Das ist alles enthalten

4 Videos1 Lektüre2 Aufgaben

Dozent

Packt - Course Instructors
Packt
375 Kurse25.243 Lernende

von

Packt

Empfohlen, wenn Sie sich für Software Development interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen