Packt
Deep Learning - Computer Vision for Beginners Using PyTorch

Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Packt

Deep Learning - Computer Vision for Beginners Using PyTorch

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 9 Stunden
3 Wochen bei 3 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 9 Stunden
3 Wochen bei 3 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Apply gradient descent using AutoGrad.

  • Analyze the LeNet architecture.

  • Develop a mini-Python project game.

  • Utilize NumPy, Pandas, and Matplotlib libraries.

Kompetenzen, die Sie erwerben

  • Kategorie: AutoGrad
  • Kategorie: Deep Learning
  • Kategorie: Python
  • Kategorie: GPU
  • Kategorie: PyTorch

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

September 2024

Bewertungen

5 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 12 Module

In this module, we will introduce you to the course, outlining what you can expect and why learning PyTorch is beneficial for diving into deep learning and computer vision. We’ll provide a brief overview of the course structure and demonstrate the power of PyTorch through a quick demo.

Das ist alles enthalten

2 Videos1 Lektüre

In this module, we will explore PyTorch, starting with a brief introduction to its core features and functionality. We will delve into the concept of tensors, explaining their importance in deep learning, and demonstrate practical applications of tensors within the PyTorch framework.

Das ist alles enthalten

1 Video

In this module, we will dive deep into practical aspects of using PyTorch. Starting with installation on Google Colab, we will cover creating and manipulating tensors, performing mathematical operations, and integrating NumPy arrays. We will also explore CUDA, understanding its role and leveraging GPU acceleration to enhance computational efficiency.

Das ist alles enthalten

7 Videos1 Aufgabe

In this module, we will delve into the AutoGrad functionality in PyTorch, understanding its role in automatic differentiation and gradient computation. We will demonstrate how to implement AutoGrad within loops, optimizing neural network training processes. Additionally, we will explore the computational graphs generated by AutoGrad, providing deeper insights into its operation and efficiency in deep learning tasks.

Das ist alles enthalten

2 Videos

In this module, we will guide you through the process of creating deep neural networks using PyTorch. Starting with building your first neural network, we will then move on to writing more complex deep neural networks. Finally, we will teach you how to design and implement custom neural network modules, providing you with the skills to tailor networks to your specific requirements.

Das ist alles enthalten

3 Videos

In this module, we will focus on Convolutional Neural Networks (CNNs) in PyTorch. You will learn how to load and preprocess the CIFAR10 dataset, visualize data for better insights, and review the fundamentals of convolution operations. We will guide you through building your first CNN and then advance to developing deeper CNN architectures, performing a series of convolution operations to achieve the desired output.

Das ist alles enthalten

5 Videos1 Aufgabe

In this module, we will explore the LeNet architecture, starting with an overview of its structure and historical importance. You will learn how to implement the LeNet model in PyTorch and then proceed to train and evaluate it for practical applications. Additionally, we will discuss how LeNet compares with other CNN architectures and how to optimize its performance through effective preparation and evaluation methods.

Das ist alles enthalten

3 Videos

In this module, we will cover the foundational aspects of Python programming, starting with why learning a programming language is essential and the specific advantages of using Python. You will learn to install and navigate Jupyter Notebook, enhancing your coding experience. This module will also delve into Python basics, including variables, data types, arithmetic operations, strings, Booleans, type conversion, and comments. Further, we will explore Python’s data structures like tuples, sets, and dictionaries, and control flow statements such as "if," "while," and "for" loops. Finally, we will cover functions and classes in Python, providing a comprehensive introduction to Python programming.

Das ist alles enthalten

21 Videos

In this module, we will apply the Python basics learned so far by creating a mini project: the Hangman game. Starting with an introduction to the project, we will develop the necessary classes and objects. We will then proceed to implement the game's logic incrementally, focusing on handling single-letter inputs and other functionalities. Finally, we will conduct thorough testing and debugging to ensure the project runs as expected, consolidating your understanding of Python programming through this hands-on exercise.

Das ist alles enthalten

6 Videos1 Aufgabe

In this module, we will delve into using NumPy for data science applications. You will learn how to create and manipulate arrays, resize and reshape them as needed, and perform slicing operations to select specific data subsets. Additionally, we will cover the concept of broadcasting, enabling you to apply operations across arrays of different shapes. Finally, we will explore various mathematical operations and functions that NumPy offers, enhancing your data manipulation and analysis capabilities.

Das ist alles enthalten

5 Videos

In this module, we will dive into the Pandas library, a powerful tool for data science in Python. You will learn about creating and managing Pandas DataFrames, essential for structured data analysis. We will cover how to load data from external files, manage null values, and use slicing operations to retrieve specific data elements. Additionally, we will discuss imputation techniques to address missing data, ensuring your datasets are clean and ready for analysis.

Das ist alles enthalten

6 Videos

In this module, we will explore Matplotlib, a fundamental library for data visualization in Python. You will learn how to create and format plots, enhancing their clarity and presentation. We will cover the creation and customization of scatter plots for in-depth data analysis, as well as generating histograms to visualize data distributions. By the end of this module, you will be equipped to utilize various plot types and formatting options to effectively present your data insights.

Das ist alles enthalten

4 Videos2 Aufgaben

Dozent

Packt - Course Instructors
Packt
375 Kurse14.912 Lernende

von

Packt

Empfohlen, wenn Sie sich für Machine Learning interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen