LearnQuest
Teradata: Building Analytics Systems

Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
LearnQuest

Teradata: Building Analytics Systems

Eric Grose

Dozent: Eric Grose

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 12 Stunden
3 Wochen bei 4 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 12 Stunden
3 Wochen bei 4 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Data Integration in Teradata

  • Data Exploration Functions in Teradata

  • Path and Pattern Analysis

  • Text Analytics Tools and Practices

Kompetenzen, die Sie erwerben

  • Kategorie: Text Analytics Tools and Practices
  • Kategorie: Path and Pattern Analysis
  • Kategorie: Data Integration
  • Kategorie: Teradata SQL
  • Kategorie: Teradata Studio
  • Kategorie: Database Management
  • Kategorie: Data Exploration Functions

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Juli 2024

Bewertungen

13 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung Data Analytics with Teradata
Wenn Sie sich für diesen Kurs anmelden, werden Sie auch für diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage
Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 4 Module

In this module, you will learn how to connect to additional data sources and understand the importance of integrating diverse datasets for comprehensive analysis. The module will explain how APIs (Application Programming Interfaces) and JSON (JavaScript Object Notation) serve as essential components in enterprise data warehousing, enabling seamless data exchange and integration. Analysts will explore how APIs act as conduits between Teradata and data vendors' servers, facilitating real-time data retrieval. The module will also cover JSON's role in structuring and transmitting data efficiently across different platforms. Practical examples will illustrate how Teradata manages common challenges in connecting with various data sources, ensuring data quality, accuracy, and consistency. By the end of the module, analysts will recognize the processes and tools that enable robust data integration and support informed business decisions.

Das ist alles enthalten

9 Videos5 Lektüren4 Aufgaben1 Diskussionsthema

This module introduces data analysts to key concepts in data exploration and cleaning using Teradata. Analysts will learn to identify columns eligible for categorical summaries, understanding how to interpret their outputs to gain insights into data patterns and distributions. The module emphasizes the importance of summary statistics for data tables, showing how these statistics provide a comprehensive overview of data quality and content. Techniques for cleaning missing, null, or incomplete data will be discussed, highlighting practical methods to ensure data accuracy and reliability. Analysts will explore how Teradata's in-database analytics facilitate data visualization, making it easier to detect trends and anomalies. The module also covers the process of Exploratory Data Analysis (EDA), explaining how to systematically explore data and test hypotheses to derive meaningful insights. By the end of the module, analysts will be equipped with the skills to perform thorough data analysis and maintain high data quality using Teradata.

Das ist alles enthalten

8 Videos3 Lektüren3 Aufgaben1 Diskussionsthema2 Plug-ins

This module will introduce data analysts to advanced data analysis techniques using Teradata, focusing on event attribution and pattern recognition. Analysts will define event attribution and understand its application in business processes, learning how to identify and attribute specific outcomes to particular events. The module will cover the nPath function, demonstrating how to search for patterns within data, which is crucial for uncovering hidden insights and trends. Analysts will also learn to match a session window time frame to specific analysis goals, ensuring that the data analyzed aligns with the intended objectives. Additionally, the module will explain how to apply aggregate functions to a sessionized dataset, enabling advanced analytics that provide deeper insights into data behavior over time. By the end of the module, analysts will be equipped with the skills to perform sophisticated data analysis using Teradata's powerful functions, driving better business decisions through detailed event and pattern analysis.

Das ist alles enthalten

8 Videos4 Lektüren3 Aufgaben1 Diskussionsthema2 Plug-ins

In this module, data analysts will learn strategies to manipulate text data for effective analysis. The module will introduce techniques for creating grams, bigrams, and trigrams using the nGrams function, which helps in breaking down text data into meaningful segments for detailed analysis. Analysts will practice these techniques to enhance their ability to process and analyze large volumes of text. The module will also cover sentiment analysis, emphasizing its importance in understanding customer needs and preferences by evaluating the emotional tone of text data. Additionally, analysts will explore the Sentiment Extractor function, learning how to extract and analyze sentiments from text data to derive actionable insights. By the end of this module, analysts will be proficient in manipulating text data, using nGrams for detailed text segmentation, and applying sentiment analysis to better understand and meet customer needs.

Das ist alles enthalten

9 Videos3 Lektüren3 Aufgaben1 Diskussionsthema2 Plug-ins

Dozent

Eric Grose
LearnQuest
3 Kurse115 Lernende

von

LearnQuest

Empfohlen, wenn Sie sich für Data Management interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen