Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Johns Hopkins University

Training AI with Humans

Dieser Kurs ist Teil von Spezialisierung Social Computing

Ian McCulloh

Dozent: Ian McCulloh

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 22 Stunden
3 Wochen bei 7 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 22 Stunden
3 Wochen bei 7 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Learn to construct and evaluate various machine learning classifiers and performance metrics.

  • Master the calculation and implications of Inter-Annotator Agreement (IAA) for data consistency.

  • Understand how to design and implement effective crowdsourcing tasks using Amazon Mechanical Turk.

  • Analyze crowdsourced data to enhance machine learning models and understand ethical considerations in AI.

Kompetenzen, die Sie erwerben

  • Kategorie: Ethical Considerations in AI and Crowdsourcing
  • Kategorie: Inter-Annotator Agreement (IAA) Analysis
  • Kategorie: Data Collection and Analysis
  • Kategorie: Machine Learning Fundamentals
  • Kategorie: Crowdsourcing Techniques

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

September 2024

Bewertungen

15 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung Social Computing
Wenn Sie sich für diesen Kurs anmelden, werden Sie auch für diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage
Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 6 Module

This course explores the intersection of machine learning (ML) and human input through various methodologies and tools. Spanning five modules, students will gain a comprehensive understanding of machine learning techniques, the role of human annotation in ML performance, and the principles and practices of crowdsourcing. The course covers key aspects of designing and implementing crowdsourced studies, calculating inter-annotator agreements, and leveraging crowdsourcing to enhance ML performance. Practical skills will be developed through hands-on activities using platforms like Amazon Mechanical Turk (AMT) and analyzing the data collected from such platforms.

Das ist alles enthalten

1 Lektüre1 Plug-in

In this module, you’ll be introduced to the fundamentals of machine learning (ML). You’ll learn the definition and principles of ML, and gain practical skills in calculating and comparing ML performance metrics. You’ll get a chance to understand how to construct ML classifiers and analyze their effectiveness across different algorithms. This module prepares you to apply ML techniques effectively in various domains, enhancing your ability to solve complex problems using data-driven approaches.

Das ist alles enthalten

5 Videos2 Lektüren3 Aufgaben1 Unbewertetes Labor

In this module, you’ll explore the significance of IAA in Machine Learning (ML) performance. You’ll learn to calculate IAA manually and implement Krippendorf’s Alpha using the software. You’ll gain insights into how IAA impacts the reliability of annotated data and its implications for ML model training. This module equips you with essential skills to ensure consistency and reliability in data annotation processes, crucial for effective ML applications.

Das ist alles enthalten

3 Videos2 Lektüren3 Aufgaben

In this module, you’ll be introduced to the concept and practical applications of crowdsourcing. You’ll get a chance to learn how crowdsourcing enhances problem-solving through collective efforts and explore real-world use cases. You’ll be able to establish your first Amazon Mechanical Turk (AMT) account and understand the platform's capabilities for executing crowdsourced tasks. You’ll get a chance to delve into crowdsourcing design principles to optimize task efficiency and reliability. This module prepares you to leverage crowdsourcing effectively for diverse applications, from data annotation to research experiments.

Das ist alles enthalten

4 Videos1 Lektüre3 Aufgaben1 Unbewertetes Labor

Platform" module focuses on leveraging Amazon Mechanical Turk (AMT) for crowdsourcing studies. Learn to design effective experiments using AMT, ensuring optimal task design and participant engagement. Collect data through AMT and perform initial analyses to derive meaningful insights from crowdsourced data. Understand the implications of AMT addiction and ethical considerations in platform-based research. This module equips you with practical skills to conduct reliable and insightful crowdsourcing studies using AMT.

Das ist alles enthalten

2 Videos3 Lektüren3 Aufgaben1 Unbewertetes Labor

This module explores the intersection of crowdsourcing and ML performance enhancement. Evaluate how Inter-Annotator Agreement (IAA) affects ML model reliability and accuracy. Explore case studies such as COVID test kit distribution and organ transplant matching to understand real-world applications. Learn to optimize ML performance through effective crowdsourcing design, ensuring data quality and reliability in machine learning applications.

Das ist alles enthalten

4 Videos3 Lektüren3 Aufgaben

Dozent

Ian McCulloh
Johns Hopkins University
17 Kurse947 Lernende

von

Empfohlen, wenn Sie sich für Software Development interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen