Google Cloud
Preparing for Google Cloud Certification: Machine Learning Engineer (berufsbezogenes Zertifikat)
Google Cloud

Preparing for Google Cloud Certification: Machine Learning Engineer (berufsbezogenes Zertifikat)

Advance your career as a Cloud ML Engineer

49.136 bereits angemeldet

Bei Coursera Plus enthalten

Erwerben Sie eine Karrierereferenz, die Ihre Qualifikation belegt
4.5

(2,126 Bewertungen)

Stufe Mittel

Empfohlene Erfahrung

2 Monate
Pro Woche 10 Stunden
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Erwerben Sie eine Karrierereferenz, die Ihre Qualifikation belegt
4.5

(2,126 Bewertungen)

Stufe Mittel

Empfohlene Erfahrung

2 Monate
Pro Woche 10 Stunden
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Learn the skills needed to be successful in a machine learning engineering role

  • Prepare for the Google Cloud Professional Machine Learning Engineer certification exam

  • Understand how to design, build, productionalize ML models to solve business challenges using Google Cloud technologies

  • Understand the purpose of the Professional Machine Learning Engineer certification and its relationship to other Google Cloud certifications

Kompetenzen, die Sie erwerben

  • Kategorie: Tensorflow
  • Kategorie: Bigquery
  • Kategorie: Machine Learning
  • Kategorie: Data Cleansing
  • Kategorie: Cloud Computing
  • Kategorie: Python Programming
  • Kategorie: keras
  • Kategorie: Build Input Data Pipeline

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Professionelles Zertifikat - 8 Kursreihen

Was Sie lernen werden

  • Recognize the data-to-AI technologies and tools offered by Google Cloud.

  • Use generative AI capabilities in applications.

  • Choose between different options to develop an AI project on Google Cloud.

  • Build ML models end-to-end by using Vertex AI.

Was Sie lernen werden

  • Describe how to improve data quality and perform exploratory data analysis

  • Build and train AutoML Models using Vertex AI and BigQuery ML

  • Optimize and evaluate models using loss functions and performance metrics

  • Create repeatable and scalable training, evaluation, and test datasets

TensorFlow on Google Cloud

TensorFlow on Google Cloud

KURS 313 Stunden

Was Sie lernen werden

  • Design and build a TensorFlow input data pipeline.

  • Use the tf.data library to manipulate data in large datasets.

  • Use the Keras Sequential and Functional APIs for simple and advanced model creation.

  • Train, deploy, and productionalize ML models at scale with Vertex AI.

Kompetenzen, die Sie erwerben

Kategorie: Tensorflow
Kategorie: Machine Learning
Kategorie: Cloud Computing
Feature Engineering

Feature Engineering

KURS 48 Stunden

Was Sie lernen werden

  • Describe Vertex AI Feature Store and compare the key required aspects of a good feature.

  • Perform feature engineering using BigQuery ML, Keras, and TensorFlow.

  • Discuss how to preprocess and explore features with Dataflow and Dataprep.

  • Use tf.Transform.

Was Sie lernen werden

  • Describe data management, governance, and preprocessing options

  • Identify when to use Vertex AutoML, BigQuery ML, and custom training

  • Implement Vertex Vizier Hyperparameter Tuning

  • Explain how to create batch and online predictions, setup model monitoring, and create pipelines using Vertex AI

Was Sie lernen werden

  • Compare static versus dynamic training and inference

  • Manage model dependencies

  • Set up distributed training for fault tolerance, replication, and more

  • Export models for portability

Was Sie lernen werden

  • Identify and use core technologies required to support effective MLOps.

  • Adopt the best CI/CD practices in the context of ML systems.

  • Configure and provision Google Cloud architectures for reliable and effective MLOps environments.

  • Implement reliable and repeatable training and inference workflows.

Kompetenzen, die Sie erwerben

Kategorie: Tensorflow
Kategorie: Python Programming
Kategorie: Machine Learning
Kategorie: keras
Kategorie: Build Input Data Pipeline
ML Pipelines on Google Cloud

ML Pipelines on Google Cloud

KURS 810 Stunden

Was Sie lernen werden

Kompetenzen, die Sie erwerben

Kategorie: Tensorflow
Kategorie: Bigquery
Kategorie: Machine Learning
Kategorie: Data Cleansing

Erwerben Sie ein Karrierezertifikat.

Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.

Dozent

Google Cloud Training
Google Cloud
1.636 Kurse2.731.033 Lernende

von

Google Cloud

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen

¹ Die Daten zum Mediangehalt und zu den offenen Stellen stammen aus dem United States Lightcast™ Job Postings Report. Daten für Jobrollen, die für die vorgestellten Programme relevant sind (3/1/2023 - 3/1/2024)