This course, “AI&ML Applications in Oil and Gas Industry” takes into a comprehensive journey through the oil and gas industry, exploring both the fundamental overview and the cutting-edge applications of Artificial Intelligence and Machine Learning (AI&ML). It gives a holistic understanding of the industry's core principles, while uncovering the transformative potential of AI&ML technologies in revolutionizing operations and decision-making processes.
AI & ML Applications in Oil and Gas Industry
Ce cours fait partie de Spécialisation Petroleum Engineering with AI Applications
Instructeur : Subject Matter Expert
Inclus avec
(27 avis)
Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Advances in AI Technology for O&G Industry
- Catégorie : Data handling in O&G Industry
- Catégorie : Onshore and Offshore Hydrocarbon Storage Facilities
- Catégorie : Seismic Data Processing using AI & ML
- Catégorie : Overview of crude oil treating systems
- Catégorie : Geomodelling Process
- Catégorie : ML in Reservoir Engineering
- Catégorie : Overview of natural gas production and processing
- Catégorie : Overview of oil and gas exploration and drilling methods
Détails à connaître
Ajouter à votre profil LinkedIn
août 2024
2 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 2 modules dans ce cours
The module on "Overview of Oil and Gas Industry" provides students with a comprehensive understanding of the fundamentals and key components of the oil and gas industry. It begins with an exploration of the origin and formation of crude oil, enabling students to grasp the geological processes that lead to its existence. It further discusses elaborately the accumulation and types of reservoirs, gaining insights into the various geological formations that contain oil and gas. The module provides an overview of the life cycle of oil and gas fields, covering exploration methods used to identify potential reserves. It also explores the equipment used in upstream oil and gas production, including drilling rigs, gathering stations and surface production/separation facilities. Furthermore, it introduces crude oil treating systems and natural gas processing, understanding the processes involved in refining and purifying these resources. The module concludes with an exploration of onshore and offshore hydrocarbon storage facilities, highlighting their importance in the oil and gas industry.
Inclus
14 vidéos1 devoir
The module on "AI & ML Applications in the Oil and Gas Industry" explores the transformative role of artificial intelligence and machine learning in revolutionizing the operations and decision-making processes within the industry. The module begins with a comprehensive review of the impacts of ML in the oil and gas industry, highlighting the key advancements and benefits brought about by these technologies. It further delves into specific applications, starting with seismic data processing techniques, focusing on salt body delineation. It also explores the geomodelling process and its integration with AI and ML algorithms for accurate reservoir characterization. Reservoir engineering will be a key focus, with emphasis on ML techniques for reservoir rock classification and optimal production engineering. It gives insights into the application of AI in the upstream sector of the industry, exploring its use in exploration, drilling and production optimization. Advances in AI technology specific to the oil and gas industry is covered, including the integration of machine learning with sensor data, predictive maintenance and anomaly detection. It gives a fundamental understanding of data handling in the industry and the state-of-the-art approaches to handle big data in the oil and gas domain.
Inclus
15 vidéos1 devoir
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Mechanical Engineering
Johns Hopkins University
Stanford University
Amazon Web Services
Google
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.