Princeton University

Algorithms, Part I

Kevin Wayne
Robert Sedgewick

Instructeurs : Kevin Wayne

1 350 566 déjà inscrits

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.9

(11,546 avis)

niveau Intermédiaire
Certaines connaissances prérequises
Planning flexible
Env. 54 heures
Apprenez à votre propre rythme
97%
La plupart des apprenants ont aimé ce cours
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.9

(11,546 avis)

niveau Intermédiaire
Certaines connaissances prérequises
Planning flexible
Env. 54 heures
Apprenez à votre propre rythme
97%
La plupart des apprenants ont aimé ce cours

Compétences que vous acquerrez

  • Catégorie : Data Structure
  • Catégorie : Algorithms
  • Catégorie : Java Programming

Détails à connaître

Évaluations

10 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé

Il y a 13 modules dans ce cours

Welcome to Algorithms, Part I.

Inclus

1 vidéo2 lectures1 devoir de programmation

We illustrate our basic approach to developing and analyzing algorithms by considering the dynamic connectivity problem. We introduce the union−find data type and consider several implementations (quick find, quick union, weighted quick union, and weighted quick union with path compression). Finally, we apply the union−find data type to the percolation problem from physical chemistry.

Inclus

5 vidéos2 lectures1 devoir1 devoir de programmation

The basis of our approach for analyzing the performance of algorithms is the scientific method. We begin by performing computational experiments to measure the running times of our programs. We use these measurements to develop hypotheses about performance. Next, we create mathematical models to explain their behavior. Finally, we consider analyzing the memory usage of our Java programs.

Inclus

6 vidéos1 lecture1 devoir

We consider two fundamental data types for storing collections of objects: the stack and the queue. We implement each using either a singly-linked list or a resizing array. We introduce two advanced Java features—generics and iterators—that simplify client code. Finally, we consider various applications of stacks and queues ranging from parsing arithmetic expressions to simulating queueing systems.

Inclus

6 vidéos2 lectures1 devoir1 devoir de programmation

We introduce the sorting problem and Java's Comparable interface. We study two elementary sorting methods (selection sort and insertion sort) and a variation of one of them (shellsort). We also consider two algorithms for uniformly shuffling an array. We conclude with an application of sorting to computing the convex hull via the Graham scan algorithm.

Inclus

6 vidéos1 lecture1 devoir

We study the mergesort algorithm and show that it guarantees to sort any array of n items with at most n lg n compares. We also consider a nonrecursive, bottom-up version. We prove that any compare-based sorting algorithm must make at least n lg n compares in the worst case. We discuss using different orderings for the objects that we are sorting and the related concept of stability.

Inclus

5 vidéos2 lectures1 devoir1 devoir de programmation

We introduce and implement the randomized quicksort algorithm and analyze its performance. We also consider randomized quickselect, a quicksort variant which finds the kth smallest item in linear time. Finally, we consider 3-way quicksort, a variant of quicksort that works especially well in the presence of duplicate keys.

Inclus

4 vidéos1 lecture1 devoir

We introduce the priority queue data type and an efficient implementation using the binary heap data structure. This implementation also leads to an efficient sorting algorithm known as heapsort. We conclude with an applications of priority queues where we simulate the motion of n particles subject to the laws of elastic collision.

Inclus

4 vidéos2 lectures1 devoir1 devoir de programmation

We define an API for symbol tables (also known as associative arrays, maps, or dictionaries) and describe two elementary implementations using a sorted array (binary search) and an unordered list (sequential search). When the keys are Comparable, we define an extended API that includes the additional methods min, max floor, ceiling, rank, and select. To develop an efficient implementation of this API, we study the binary search tree data structure and analyze its performance.

Inclus

6 vidéos1 lecture1 devoir

In this lecture, our goal is to develop a symbol table with guaranteed logarithmic performance for search and insert (and many other operations). We begin with 2−3 trees, which are easy to analyze but hard to implement. Next, we consider red−black binary search trees, which we view as a novel way to implement 2−3 trees as binary search trees. Finally, we introduce B-trees, a generalization of 2−3 trees that are widely used to implement file systems.

Inclus

3 vidéos2 lectures1 devoir

We start with 1d and 2d range searching, where the goal is to find all points in a given 1d or 2d interval. To accomplish this, we consider kd-trees, a natural generalization of BSTs when the keys are points in the plane (or higher dimensions). We also consider intersection problems, where the goal is to find all intersections among a set of line segments or rectangles.

Inclus

5 vidéos1 lecture1 devoir de programmation

We begin by describing the desirable properties of hash function and how to implement them in Java, including a fundamental tenet known as the uniform hashing assumption that underlies the potential success of a hashing application. Then, we consider two strategies for implementing hash tables—separate chaining and linear probing. Both strategies yield constant-time performance for search and insert under the uniform hashing assumption.

Inclus

4 vidéos2 lectures1 devoir

We consider various applications of symbol tables including sets, dictionary clients, indexing clients, and sparse vectors.

Inclus

4 vidéos1 lecture

Instructeurs

Évaluations de l’enseignant
4.8 (1,847 évaluations)
Kevin Wayne
Princeton University
5 Cours1 818 242 apprenants
Robert Sedgewick
Princeton University
7 Cours1 863 958 apprenants

Offert par

Princeton University

Recommandé si vous êtes intéressé(e) par Algorithms

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’

Avis des étudiants

Affichage de 3 sur 11546

4.9

11 546 avis

  • 5 stars

    89,27 %

  • 4 stars

    8,81 %

  • 3 stars

    1,09 %

  • 2 stars

    0,25 %

  • 1 star

    0,56 %

HM
5

Révisé le 9 mai 2019

SP
5

Révisé le 8 sept. 2020

GH
5

Révisé le 2 juil. 2019

Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions