This course provides an in-depth exploration of Python’s four built-in data structures: lists, tuples, sets, and dictionaries. Each structure will be introduced in detail, focusing on how to create, access, and manipulate them efficiently. The course will emphasize their unique characteristics and appropriate use cases. Learners will also apply their understanding in a case study, showcasing the practical application of these data structures to solve real-world problems.
Une nouvelle année, de bonnes résolutions et des économies gigantesques : profitez d'un an d'accès illimité aux formations de Coursera Plus, pour $199. Économiser maintenant.
BiteSize Python for Absolute Beginners: Data Structures
Ce cours fait partie de Spécialisation BiteSize Python for Absolute Beginners
Instructeur : Di Wu
Inclus avec
Ce que vous apprendrez
Evaluate the strengths and weaknesses of different Python data structures and apply them to solve practical problems
Implement various operations on Python data structures, such as accessing, slicing, modifying, and using comprehensions
Understand the characteristics and uses of core Python data structures, including lists, tuples, sets, and dictionaries.
Compétences que vous acquerrez
- Catégorie : Jupyter Notebook
- Catégorie : Python (Programming Language)
- Catégorie : Python Data Structures
Détails à connaître
Ajouter à votre profil LinkedIn
décembre 2024
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 5 modules dans ce cours
This module introduces the list as a built-in data structure in Python. It covers the basics of what a list is, how to create lists, including heterogeneous lists (lists containing different data types), and how to access, slice, and manipulate them. Additionally, learners will explore list comprehension, a powerful Pythonic way to work efficiently with lists.
Inclus
5 lectures1 devoir10 laboratoires non notés
This module explores the tuple, a built-in data structure in Python. It covers what a tuple is, how to create one, and how to work with heterogeneous tuples (containing elements of different types). Learners will learn how to access elements by index and through iteration, slice tuples, and understand the concept of tuple comprehension for efficient data handling.
Inclus
2 lectures1 devoir6 laboratoires non notés
This module introduces the set, a built-in data structure in Python that stores unique, unordered elements. It covers what a set is, how to create one, and how to manage elements within a set. The module also explores set operations (such as union, intersection, and difference), common set methods, and set comprehension for efficient data manipulation.
Inclus
2 lectures1 devoir5 laboratoires non notés
This module focuses on the dictionary (dict), a built-in Python data structure that stores key-value pairs. It covers what a dictionary is, how to create one, and how to access its elements using keys. Learners will explore common dictionary methods to manipulate data, and the module concludes with an introduction to dictionary comprehension for efficient data creation and processing.
Inclus
2 lectures1 devoir4 laboratoires non notés
In this module, students will apply their knowledge of Python’s built-in data structures—list, tuple, set, and dictionary—by working on a real-life case study involving a grade book for students. They will use each of the data structures to store and manipulate the grade data, allowing them to practice and improve their understanding while comparing the advantages and limitations of each structure.
Inclus
4 laboratoires non notés
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
University of Michigan
Duke University
Duke University
University of Michigan
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.