The course "Foundations of Probability and Random Variables" introduces fundamental concepts in probability and random variables, essential for understanding computational methods in computer science and data science. Through five comprehensive modules, learners will explore combinatorial analysis, probability, conditional probability, and both discrete and continuous random variables. By mastering these topics, students will gain the ability to solve complex problems involving uncertainty, design probabilistic models, and apply these concepts in fields like machine learning, AI, and algorithm design.
Foundations of Probability and Random Variables
Ce cours fait partie de Spécialisation Statistical Methods for Computer Science
Instructeurs : Ian McCulloh
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Master combinatorial techniques, including permutations, combinations, and multinomial coefficients, to solve counting and probability problems.
Apply probability axioms, construct Venn diagrams, and calculate sample space sizes to evaluate probabilities in various scenarios.
Utilize Bayes' formula, the multiplication rule, and conditional probability to assess event relationships and solve real-world problems.
Analyze discrete and continuous random variables using probability density functions, cumulative distribution functions, and expected values.
Compétences que vous acquerrez
- Catégorie : Continuous Random Variables
- Catégorie : Discrete Random Variables
- Catégorie : Conditional Probability
- Catégorie : Combinatorial Analysis
- Catégorie : Probability Calculation
Détails à connaître
Ajouter à votre profil LinkedIn
octobre 2024
21 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 6 modules dans ce cours
This course provides a comprehensive introduction to fundamental concepts in probability and statistics, focusing on counting principles, permutations, combinations, and multinomial coefficients. Students will explore probability axioms, conditional probabilities, and Bayes’s Formula while using Venn diagrams to visualize events. The course covers random variables, including discrete and continuous types, expected values, and various probability distributions. Practical applications in R programming and data analysis tools will enhance understanding through simulations and real-world problem-solving. By the end, students will be equipped to analyze and interpret statistical data effectively.
Inclus
2 lectures1 plugin
This module covers the usefulness of an effective method for counting the number of ways that things can occur. Many problems in probability theory can be solved simply by counting the number of different ways that a certain event can occur.
Inclus
9 vidéos2 lectures3 devoirs1 laboratoire non noté
This module introduces the concept of the probability of an event and then shows how probabilities can be computed in certain situations.
Inclus
9 vidéos3 lectures4 devoirs1 laboratoire non noté
This module explores one of the most important concepts in probability theory, that of conditional probability. The importance of this concept is twofold. First, we are often interested in calculating probabilities when some partial information concerning the result of an experiment is available; in such a situation, the desired probabilities are conditional. Second, even when no partial information is available, conditional probabilities can often be used to compute the desired probabilities more easily.
Inclus
9 vidéos3 lectures4 devoirs1 laboratoire non noté
This module discusses the function of outcomes rather than the actual outcomes themselves. In particular, we examine random variables that can take on at most a countable number of possible values. We call these types of variables, discrete random variables.
Inclus
9 vidéos4 lectures5 devoirs1 laboratoire non noté
This module extends the concept of random variables where the outcomes cannot be counted. We explore probability density functions, cumulative distribution functions, the normal distribution and other common distributions.
Inclus
10 vidéos4 lectures5 devoirs1 laboratoire non noté
Instructeurs
Offert par
Recommandé si vous êtes intéressé(e) par Probability and Statistics
IIMA - IIM Ahmedabad
DeepLearning.AI
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.