University of Colorado Boulder
Generalized Linear Models and Nonparametric Regression

Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.

University of Colorado Boulder

Generalized Linear Models and Nonparametric Regression

Brian Zaharatos

Instructeur : Brian Zaharatos

4 168 déjà inscrits

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.4

(18 avis)

niveau Intermédiaire

Expérience recommandée

Planning flexible
Env. 42 heures
Apprenez à votre propre rythme
Préparer un diplôme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.4

(18 avis)

niveau Intermédiaire

Expérience recommandée

Planning flexible
Env. 42 heures
Apprenez à votre propre rythme
Préparer un diplôme

Ce que vous apprendrez

  • Describe how to generalize the linear model framework to accommodate data that is not suitable for the standard linear regression model.

  • State some advantages and disadvantages of (generalized) additive models.

  • Describe how an additive model can be generalized to incorporate non-normal response variables (i.e., define a generalized additive model).

Compétences que vous acquerrez

  • Catégorie : Calculus
  • Catégorie : and probability theory.
  • Catégorie : Linear Algebra

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Évaluations

8 quizzes

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Statistical Modeling for Data Science Applications
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable
Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 4 modules dans ce cours

In this module, we will introduce generalized linear models (GLMs) through the study of binomial data. In particular, we will motivate the need for GLMs; introduce the binomial regression model, including the most common binomial link functions; correctly interpret the binomial regression model; and consider various methods for assessing the fit and predictive power of the binomial regression model.

Inclus

7 vidéos4 lectures3 quizzes2 devoirs de programmation2 évaluations par les pairs1 sujet de discussion2 laboratoires non notés

In this module, we will consider how to model count data. When the response variable is a count of some phenomenon, and when that count is thought to depend on a set of predictors, we can use Poisson regression as a model. We will describe the Poisson regression in some detail and use Poisson regression on real data. Then, we will describe situations in which Poisson regression is not appropriate, and briefly present solutions to those situations.

Inclus

7 vidéos2 quizzes1 devoir de programmation1 évaluation par les pairs3 laboratoires non notés

In this module, we will introduce the concept of a nonparametric regression model. We will contrast this notion with the parametric models that we have studied so far. Then, we’ll study particular nonparametric regression models: kernel estimators and splines. Finally, we will introduce additive models as a blending of parametric and nonparametric methods.

Inclus

6 vidéos1 quiz1 devoir de programmation1 évaluation par les pairs3 laboratoires non notés

Some models, such as linear regression, are easily interpretable, but inflexible, in that they don't capture many real-world relationships accurately. Other models, such as neural networks, are quite flexible, but very difficult to interpret. Generalized additive models (GAMs) are a nice balance between flexibility and interpretability. In this module, we will further motivate GAMs, learn the basic mathematics of fitting GAMs, and implementing them on simulated and real data in R.

Inclus

6 vidéos1 lecture2 quizzes1 devoir de programmation1 évaluation par les pairs3 laboratoires non notés

Instructeur

Évaluations de l’enseignant
4.6 (7 évaluations)
Brian Zaharatos
University of Colorado Boulder
3 Cours11 831 apprenants

Offert par

Recommandé si vous êtes intéressé(e) par Probability and Statistics

Préparer un diplôme

Ce site cours fait partie du (des) programme(s) diplômant(s) suivant(s) proposé(s) par University of Colorado Boulder. Si vous êtes admis et que vous vous inscrivez, les cours que vous avez suivis peuvent compter pour l'apprentissage de votre diplôme et vos progrès peuvent être transférés avec vous.¹

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’

Avis des étudiants

Affichage de 3 sur 18

4.4

18 avis

  • 5 stars

    77,77 %

  • 4 stars

    0 %

  • 3 stars

    11,11 %

  • 2 stars

    5,55 %

  • 1 star

    5,55 %

CT
5

Révisé le 27 juin 2023

Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions