Fine-tuning a large language model (LLM) is crucial for aligning it with specific business needs, enhancing accuracy, and optimizing its performance. In turn, this gives businesses precise, actionable insights that drive efficiency and innovation. This course gives aspiring gen AI engineers valuable fine-tuning skills employers are actively seeking.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Generative AI Advance Fine-Tuning for LLMs
Ce cours fait partie de plusieurs programmes.
Instructeurs : Joseph Santarcangelo
Inclus avec
Expérience recommandée
Ce que vous apprendrez
In-demand gen AI engineering skills in fine-tuning LLMs employers are actively looking for in just 2 weeks
Instruction-tuning and reward modeling with the Hugging Face, plus LLMs as policies and RLHF
Direct preference optimization (DPO) with partition function and Hugging Face and how to create an optimal solution to a DPO problem
How to use proximal policy optimization (PPO) with Hugging Face to create a scoring function and perform dataset tokenization
Compétences que vous acquerrez
- Catégorie : Reinforcement Learning
- Catégorie : Proximal policy optimization (PPO)
- Catégorie : Reinforcement learning
- Catégorie : Direct preference optimization (DPO)
- Catégorie : Hugging Face
- Catégorie : Instruction-tuning
Détails à connaître
Ajouter à votre profil LinkedIn
octobre 2024
5 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 2 modules dans ce cours
In this module, you’ll begin by defining instruction-tuning and its process. You’ll also gain insights into loading a dataset, generating text pipelines, and training arguments. Further, you’ll delve into reward modeling, where you’ll preprocess the dataset and apply low-rank adaptation (LoRA) configuration. You’ll also learn to quantify quality responses, guide model optimization, and incorporate reward preferences. You’ll also describe reward trainer, an advanced training technique to train a model, and reward model loss using Hugging Face. The labs, in this module will allow practice on instruction-tuning and reward models.
Inclus
6 vidéos3 lectures2 devoirs2 éléments d'application1 plugin
In this module, you’ll describe the applications of large language models (LLMs) to generate policies and probabilities for generating responses based on the input text. You’ll also gain insights into the relationship between the policy and the language model as a function of omega to generate possible responses. Further, this module will demonstrate how to calculate rewards using human feedback incorporating reward function, train response samples, and evaluate agent’s performance. You’ll also define the scoring function for sentiment analysis using PPO with Hugging Face. You’ll also explain the PPO configuration class for specific models and learning rate for PPO training and how the PPO trainer processes the query samples to optimize the chatbot’s policies to get high-quality responses. This module delves into direct preference optimization (DPO) concepts to provide optimal solutions for the generated queries based on human preferences more directly and efficiently using Hugging Face. The labs in this module provide hands-on practice on human feedback and DPO.
Inclus
10 vidéos5 lectures3 devoirs2 éléments d'application3 plugins
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
University of Michigan
Indian Institute of Technology Guwahati
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
It takes about 3–5 hours to complete this course, so you can have the job-ready skills you need to impress an employer within just two weeks!
This course is intermediate level, so to get the most out of your learning, you must have basic knowledge of Python, large language models (LLMs), reinforcement learning, and instruction-tuning. You should also be familiar with machine learning and neural network concepts.
This course is part of the Generative AI Engineering with LLMs specialization. When you complete the specialization, you will have the skills and confidence to take on job roles such as AI engineer, data scientist, machine learning engineer, deep learning engineer, AI engineer, and developers seeking to work with LLMs.