Welcome to the Heavy Manufacturing course, where we explore the intricate techniques and technologies essential for modern manufacturing. This comprehensive program delves into three key areas: Machining Processes in Manufacturing, Fluid Power System in Production and Controls of Manufacturing, and Pressure Vessel Specialized Manufacturing, Surface Treatment, and Refractory Materials. Through theoretical knowledge and hands-on practical applications, students will gain a deep understanding of the principles, methodologies, and best practices shaping the field of advanced manufacturing.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Heavy Manufacturing Process and System
Ce cours fait partie de Spécialisation Heavy Manufacturing
Instructeur : Subject Matter Expert
Inclus avec
Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Gain expertise in hydraulic and pneumatic systems, control valves, and design of circuits for various manufacturing applications
- Catégorie : Acquire hands-on experience in maintaining fluid power systems and addressing issues to ensure uninterrupted operation
- Catégorie : Explore CNC machines, automation, and productivity enhancement techniques for modern manufacturing processes
- Catégorie : Learn welding techniques, surface treatment methods, and selection of refractory materials for high-pressure environments for Process equipment
- Catégorie : Learn the fundamentals of turning, milling, deep hole drilling, and thread machining, enabling precise component fabrication
Détails à connaître
Ajouter à votre profil LinkedIn
juin 2024
3 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 3 modules dans ce cours
Machining operations are essential to modern manufacturing, including a diverse range of techniques for shaping and finishing raw materials into precise components. Machining procedures are fundamentally about removing material from a workpiece to produce the desired form, size, and surface quality. Understanding the systems, equipment, and activities involved is critical for improving manufacturing efficiency and quality. The contact between a cutting tool and the workpiece is crucial to the material removal mechanism, which is generally accomplished by metal cutting. Cutting forces, chip formation, and surface finish are all heavily dependent on tool geometry, material composition, and cutting angles. As cutting advances, tools wear and finally fail, reducing machining accuracy and efficiency. Monitoring tool wear and failure scenarios are critical for ensuring proper machining performance and tool life. Various types of chips can occur during machining, depending on factors such as cutting speed, feed rate, and tool shape. Understanding chip formation mechanisms is essential for optimizing machining parameters and avoiding chip-related problems such as built-up edges and poor surface finish. Furthermore, heat generation during machining can affect tool life and workpiece integrity, emphasizing the significance of cooling solutions such as cutting fluids. Common machining operations include turning, shaping, drilling, milling, and grinding, each with their own characteristics and applications. Specialized methods like as deep hole drilling, jig grinding, and complex shape machining allow for the precise manufacturing of sophisticated components for a wide range of industries. Thread machining processes, such as thread whirling, provide effective options for creating threaded products with high precision and surface quality. CNC machines in modern production automate tool movements and enable complicated geometries, revolutionizing machining operations. Understanding CNC machines and programming principles is critical for increasing production efficiency and flexibility while adhering to stringent quality standards. In conclusion, machining operations are fundamental to production, providing adaptable options for creating a wide range of components with precision and efficiency. By mastering machining principles and processes, Manufacturer may attain peak performance and competitiveness in today's dynamic industrial world.
Inclus
18 vidéos1 devoir
Fluid power systems play a pivotal role in modern manufacturing, providing efficient and reliable means of transmitting power through the use of pressurized fluids, typically hydraulic oil or compressed air. These systems offer numerous advantages, including high power density, precise control, and versatility in a wide range of applications. Pumps, actuators, valves, and fluid reservoirs are essential components of fluid power systems. Hydraulic systems use hydraulic pumps to generate high-pressure fluid, which is transmitted through control valves to actuators like hydraulic cylinders or motors. In contrast, pneumatic systems use compressors to generate compressed air, which is then controlled by pneumatic valves and transferred to pneumatic actuators such as cylinders or rotary actuators. Control valves regulate fluid flow and pressure inside the system. There are several types of control valves available, including directional, pressure, and flow control valves. Pressure control valves, such as relief valves and pressure reducing valves, regulate the system's pressure levels within acceptable limits, providing safe and effective operation. Servo valves control fluid flow precisely and are widely employed in high-performance applications that require quick response and accuracy. Hydraulic-powered circuits are widely used in manufacturing operations such as milling, grinding, shaping, drilling, hydraulic presses, and forklift machines. These circuits provide exact control over motion and force, resulting in effective material removal, shaping, and lifting activities. Application circuits in pneumatic systems are designed to perform specialized functions including two-handed safety, clamp pressure control, and dual pressure control. These circuits use pneumatic actuators and control valves to achieve the desired motion and force in manufacturing processes. Despite their dependability, fluid power systems can develop problems like as leakage, component wear, or contamination, resulting in reduced performance or system failure. Routine maintenance and troubleshooting are critical for identifying and resolving problems quickly, ensuring smooth operation and minimizing downtime in manufacturing operations. The troubleshooting stages for pneumatic systems and servo valves include a systematic identification of symptoms, component inspection, and corrective actions to restore optimal performance. Regular maintenance methods, such as fluid inspection, filter replacement, and component lubrication, help extend the lifespan and reliability of fluid power systems, assuring continuous production processes.
Inclus
12 vidéos1 devoir
Pressure vessels are critical components in many industries, as they are designed to properly contain fluids or gases at high pressures and temperatures. Specialised manufacturing procedures and surface treatments are required to assure reliability and endurance under rigorous working conditions. Shear cutting, water jet cutting, plasma arc cutting, and laser cutting are some of the cutting processes used in pressure vessel fabrication. These technologies provide precision and adaptability in forming vessel components from basic materials like steel plates. Shrink fitting is a process for assembling cylindrical components that involves heating one part to expand it, allowing for the insertion of another part, which shrinks when cooled, resulting in a tight interference fit. Tube-to-tubesheet welding, which includes techniques such as Inert Gas Backing Welding (IBW) and orbital welding, provides leak-free connections between tubes and tubesheets in heat exchangers and other vessel components. Tube-to-tubesheet joint expansion increases the mechanical strength and sealing integrity of these connections. Robotic welding systems are used for high-volume, complex welding activities that require precision and consistency in joined vessel components. Electro Discharge Machining (EDM) is a method for machining precise shapes in hard materials such as refractory metals, providing precision and variety in pressure vessel manufacture. Specialized machining procedures are used to create the desired forms and dimensions in pressure vessels composed of Fibre Reinforced Polymer (FRP) or ceramics. Surface preparation processes, such as cleaning, blasting, and chemical treatments, are critical for assuring coating adhesion and improving corrosion resistance in pressure vessel components. Painting and thermal spray aluminum (TSA) coating are two popular surface treatment procedures used to protect pressure vessel surfaces from corrosion and increase their service life in extreme conditions. In pressure vessels working at high temperatures, refractory materials are used to provide thermal insulation and protect the vessel walls from heat damage. Overall, specialized manufacturing techniques and surface treatments are essential to the design and maintenance of pressure vessels, assuring their dependability and safety in a variety of industrial applications.
Inclus
16 vidéos1 devoir
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Mechanical Engineering
EDUCBA
L&T EduTech
L&T EduTech
University of Michigan
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.