An emerging trend in AI is the availability of technologies in which automation is used to select a best-fit model, perform feature engineering and improve model performance via hyperparameter optimization. This automation will provide rapid-prototyping of models and allow the Data Scientist to focus their efforts on applying domain knowledge to fine-tune models. This course will take the learner through the creation of an end-to-end automated pipeline built by Watson Studio’s AutoAI experiment tool, explaining the underlying technology at work as developed by IBM Research. The focus will be on working with an auto-generated Python notebook. Learners will be provided with test data sets for two use cases.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Machine Learning Rapid Prototyping with IBM Watson Studio
Instructeurs : Mark J Grover
1 552 déjà inscrits
Inclus avec
(13 avis)
Compétences que vous acquerrez
- Catégorie : Data Science
- Catégorie : Python Programming
- Catégorie : Information Engineering
- Catégorie : Machine Learning
- Catégorie : Artificial Intelligence (AI)
Détails à connaître
Ajouter à votre profil LinkedIn
13 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 4 modules dans ce cours
In this module, you'll learn about the developing landscape of AutoAI technologies. You'll also become familiar with the Watson Studio platform in order to be able to perform your own AutoAI Experiments. After observing the AutoAI tool build prototypes for two use cases, you will try out the tool for yourself to build additional prototypes.
Inclus
7 vidéos14 lectures4 devoirs
In this module, you will learn about the automated data preparation techniques performed by AutoAI and get a chance to experiment with different settings for data preprocessing in the AutoAI-generated Python notebook. You'll also learn about the procedure for automated model selection and experiment using different models on the datasets.
Inclus
9 vidéos11 lectures3 devoirs
In this module, you will learn about the algorithm for automated feature engineering and perform some exploratory data analysis to try to understand why the algorithm performed particular feature transformations. You'll also learn about sophisticated methods for optimizing hyperparameters and explore hyperparameter tuning on the datasets using the AutoAI-generated Python notebook.
Inclus
9 vidéos11 lectures3 devoirs
In this module, you will evaluate prototypes using the different evaluation metrics calculated by the AutoAI tool. You will also deploy the prototype for testing using the Watson Machine Learning API.
Inclus
4 vidéos9 lectures3 devoirs1 évaluation par les pairs
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
Coursera Instructor Network
Coursera Instructor Network
Coursera Instructor Network
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 13
13 avis
- 5 stars
69,23 %
- 4 stars
0 %
- 3 stars
15,38 %
- 2 stars
0 %
- 1 star
15,38 %
Révisé le 13 sept. 2020
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.