As Artificial Intelligence (AI) becomes integrated into high-risk domains like healthcare, finance, and criminal justice, it is critical that those responsible for building these systems think outside the black box and develop systems that are not only accurate, but also transparent and trustworthy. This course is a comprehensive, hands-on guide to Interpretable Machine Learning, empowering you to develop AI solutions that are aligned with responsible AI principles. You will also gain an understanding of the emerging field of Mechanistic Interpretability and its use in understanding large language models.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Interpretable Machine Learning
Ce cours fait partie de Spécialisation Explainable AI (XAI)
Instructeur : Brinnae Bent, PhD
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Describe and implement regression and generalized interpretable models
Demonstrate knowledge of decision trees, rules, and interpretable neural networks
Explain foundational Mechanistic Interpretability concepts, hypotheses, and experiments
Compétences que vous acquerrez
- Catégorie : Machine Learning
- Catégorie : Responsible AI
- Catégorie : Artificial Intelligence
- Catégorie : Mechanistic Interpretability
- Catégorie : Interpretable Machine Learning
Détails à connaître
Ajouter à votre profil LinkedIn
septembre 2024
3 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 3 modules dans ce cours
In this module, you will be introduced to the concepts of regression and generalized models for interpretability. You will learn how to describe interpretable machine learning and differentiate between interpretability and explainability, explain and implement regression models in Python, and demonstrate knowledge of generalized models in Python. You will apply these learnings through discussions, guided programming labs, and a quiz assessment.
Inclus
5 vidéos6 lectures1 devoir2 sujets de discussion3 laboratoires non notés
In this module, you will be introduced to the concepts of decision trees, decision rules, and interpretability in neural networks. You will learn how to explain and implement decision trees and decision rules in Python and define and explain neural network interpretable model approaches, including prototype-based networks, monotonic networks, and Kolmogorov-Arnold networks. You will apply these learnings through discussions, guided programming labs, and a quiz assessment.
Inclus
8 vidéos1 lecture1 devoir2 sujets de discussion3 laboratoires non notés
In this module, you will be introduced to the concept of Mechanistic Interpretability. You will learn how to explain foundational Mechanistic Interpretability concepts, including features and circuits; describe the Superposition Hypothesis; and define Representation Learning to be able to analyze current research on scaling Representation Learning to LLMs. You will apply these learnings through discussions, guided programming labs, and a quiz assessment.
Inclus
6 vidéos4 lectures1 devoir3 sujets de discussion1 laboratoire non noté
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
Johns Hopkins University
Amazon Web Services
Fred Hutchinson Cancer Center
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.