このコースの目的は、柔軟で手軽な TensorFlow 2.x と Keras を使用して、機械学習モデルを作成、トレーニング、およびデプロイすることです。TensorFlow 2.x API の階層について学び、TensorFlow の主要コンポーネントを実践演習で理解します。データセットと特徴列の扱い方について学びます。TensorFlow 2.x 入力データ パイプラインの設計と作成の方法について学びます。tf.data.Dataset を使用して csv データ、NumPy 配列、テキストデータ、および画像を読み込む実践演習を行います。数値、カテゴリ、バケット、およびハッシュの特徴列を作成する実践演習も行います。
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Intro to TensorFlow 日本語版
Ce cours fait partie de Spécialisation Machine Learning with TensorFlow Google Cloud 日本語版
Instructeur : Google Cloud Training
Inclus avec
(12 avis)
Détails à connaître
Ajouter à votre profil LinkedIn
12 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 6 modules dans ce cours
これは TensorFlow 2.x の入門コースです。TensorFlow 2.x では手軽な Keras を活用して機械学習モデルを作成できます。このコースでは、TensorFlow 2.x 入力データ パイプラインの設計と作成、TensorFlow 2.x と Keras を使用した機械学習モデルの作成、機械学習モデルの精度向上、大規模に使用する機械学習モデルの記述について取り上げます。
Inclus
2 vidéos
TensorFlow 2.x の新しいパラダイムについて学びます。TensorFlow API の階層について学び、TensorFlow の主要コンポーネント、テンソル、および変数を実践演習で理解します。
Inclus
5 vidéos1 lecture3 devoirs2 éléments d'application1 sujet de discussion
データセットと特徴列の扱い方について学びます。tf.data.Dataset を使用して csv データ、NumPy 配列、テキストデータ、および画像を読み込む実践演習を行います。数値、カテゴリ、バケット、およびハッシュの特徴列を作成する実践演習も行います。
Inclus
10 vidéos1 lecture3 devoirs6 éléments d'application1 sujet de discussion
このモジュールでは、Keras Sequential API を使用して TensorFlow モデルを記述することを学びます。ただし、モデルの記述の前に、活性化関数、損失、および最適化について学びます。次に、Keras Sequential API を使用してディープ ラーニング モデルを作成する方法を学びます。クラウドに予測モデルをデプロイする方法についても学びます。
Inclus
5 vidéos1 lecture2 devoirs3 éléments d'application
Sequential モデル API はほとんどのディープ ラーニング モデルの開発に適していますが、制約がいくつかあります。その一例を挙げると、入力ソースが複数あるモデル、出力先が複数になるモデル、レイヤを再利用するモデルを定義するのは単純ではありません。Keras Functional API は tf.keras.Sequential API より柔軟にモデルを作成する手段です。Functional API は非線形トポロジのモデル、レイヤを共有するモデル、入力または出力が複数あるモデルに対応できます。Keras Functional API ではモデルを柔軟に定義できます。特に、入力または出力が複数あるモデルや、レイヤを共有するモデルを定義できます。アドホックの非巡回ネットワーク グラフを定義することもできます。大抵のディープ ラーニング モデルの主な目的は、レイヤの有向非巡回グラフ(DAG)です。Functional API はレイヤのグラフを作成する手段です。モデルのパフォーマンス向上に役立つ正則化についても学びます。
Inclus
6 vidéos1 lecture3 devoirs1 élément d'application
このコースでこれまでに取り上げた TensorFlow のトピックをここでまとめます。コア TensorFlow コード、tf.data API、Keras Sequential API、および Keras Functional API について復習し、最後には Cloud AI Platform での機械学習モデルのスケーリングについて取り上げます。
Inclus
1 vidéo2 lectures1 devoir
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
Imperial College London
Google
Google Cloud
Google Cloud
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.