The course "Introduction to Neural Networks" provides a comprehensive introduction to the foundational concepts of neural networks, equipping learners with essential skills in deep learning and machine learning. Dive into the mathematics that drive neural network algorithms and explore the optimization techniques that enhance their performance. Gain hands-on experience training machine learning models using gradient descent and evaluate their effectiveness in practical scenarios.
Introduction to Neural Networks
Ce cours fait partie de Spécialisation Foundations of Neural Networks
Instructeur : Zerotti Woods
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Understand the foundational mathematics and key concepts driving neural networks and machine learning.
Analyze and apply machine learning algorithms, optimization methods, and loss functions to train and evaluate models effectively.
Explore the design and structure of feedforward neural networks, using gradient descent to optimize and train deep models.
Investigate convolutional neural networks, their elements, and how they apply to real-world problems like image processing and computer vision.
Compétences que vous acquerrez
- Catégorie : Mathematical Foundations for Deep Learning
- Catégorie : Optimization Techniques for Machine Learning
- Catégorie : Regularization Methods
- Catégorie : Convolutional Neural Network (CNN) Design
- Catégorie : Design and Training of Feedforward Neural Networks
Détails à connaître
Ajouter à votre profil LinkedIn
décembre 2024
10 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 6 modules dans ce cours
This course provides a comprehensive overview of the foundational mathematics and concepts behind Deep Learning and Machine Learning. Students will analyze various Machine Learning Algorithms, focusing on Optimization Techniques and Regularization Methods, while evaluating their effectiveness. Practical applications will include training algorithms using Gradient Descent and assessing their performance. The course also covers the structure and data elements of Convolutional Neural Networks (CNNs), emphasizing their design for specific tasks. Lastly, students will explore current research and propose future directions in Regularization and CNNs, contributing to advancements in Deep Learning methodologies.
Inclus
2 lectures
This module will lay the foundations that are needed to be successful in the field of Deep Learning. It will also introduce motivation for the field as well as discuss the history of the field.
Inclus
3 vidéos1 lecture2 devoirs1 laboratoire non noté
This module will discuss the fundamentals of Machine Learning. You will explore different aspects of Machine Learning Algorithms and what is needed to create an algorithm.
Inclus
1 vidéo1 lecture2 devoirs1 laboratoire non noté
This module will discuss the building blocks of Deep Feedforward Neural Networks. Students will explore different parts of Deep Feedforward NN and what is needed to create and train the algorithms.
Inclus
1 vidéo1 lecture2 devoirs1 laboratoire non noté
This module will discuss the regularization in Deep Feedforward Neural Networks. Learners will explore the reasons for regularization along with different techniques.
Inclus
1 vidéo1 lecture2 devoirs1 laboratoire non noté
This module will discuss Convolutional Neural Networks. Students will explore the reasons for regularization along with different techniques.
Inclus
1 vidéo1 lecture2 devoirs1 laboratoire non noté
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Algorithms
Johns Hopkins University
University of Colorado Boulder
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.