The course "Machine Learning and Emerging Technologies in Cybersecurity" offers an in-depth exploration of machine learning applications in cybersecurity, focusing on techniques for threat detection and prevention. Participants will gain a solid grounding in machine learning fundamentals, including neural networks, clustering, and support vector machines, tailored specifically for cybersecurity contexts. Unique to this course is the integration of machine learning with Intrusion Detection Systems (IDS), equipping learners with practical skills to enhance threat detection capabilities.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Machine Learning and Emerging Technologies in Cybersecurity
Ce cours fait partie de Spécialisation Intrusion Detection
Instructeur : Jason Crossland
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Explore advanced machine learning techniques, including neural networks and clustering, for improved threat detection in cybersecurity.
Understand the integration of machine learning algorithms into Intrusion Detection Systems (IDS) for enhanced security measures.
Gain knowledge of The Onion Router (ToR) architecture and its applications, focusing on privacy and anonymous communication.
Learn to utilize Security Onion tools for effective incident response within high-volume enterprise environments, enhancing cybersecurity strategy.
Compétences que vous acquerrez
- Catégorie : Integration of ML in IDS
- Catégorie : Advanced Machine Learning Techniques
- Catégorie : Incident Response with IDS Tools
- Catégorie : Data Anonymization and Security
- Catégorie : ToR Networking Proficiency
Détails à connaître
Ajouter à votre profil LinkedIn
novembre 2024
13 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 5 modules dans ce cours
This course provides a comprehensive introduction to machine learning and data mining, covering key algorithms and tools like RapidMiner and Security Onion. Students will explore advanced topics such as neural networks, clustering, and support vector machines, while also learning to evaluate model performance through confusion matrices and ROC curves. Additionally, the course delves into ToR architecture, privacy concerns, and the practical installation of ToR clients. Emphasis will be placed on incident response within Computer Security Incident Response Teams (CSIRTs) and effective information-sharing practices. By the end of the course, participants will have a robust understanding of both machine learning techniques and their applications in cybersecurity.
Inclus
1 vidéo3 lectures
The course delves deeper into specific approaches, including neural networks, clustering, and support vector machines (SVMs), providing students with a solid foundation in both the theory and practice of these advanced techniques.
Inclus
5 vidéos3 lectures3 devoirs2 laboratoires non notés3 plugins
This course explores the integration of Machine Learning (ML) algorithms into Intrusion Detection Systems (IDS) to enhance threat detection capabilities.
Inclus
3 vidéos4 lectures3 devoirs5 plugins
This course provides a comprehensive understanding of The Onion Router (ToR) architectures, focusing on the critical components that make up this secure and anonymous communication system.
Inclus
5 lectures3 devoirs2 plugins
This module explores the critical role of Intrusion Detection Systems (IDS) within Cyber Security Incident Response Teams (CSIRTs), particularly in high-volume enterprise environments.
Inclus
7 vidéos7 lectures4 devoirs4 plugins
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Security
Kennesaw State University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.