Have you ever wondered why ceramics are hard and brittle while metals tend to be ductile? Why some materials conduct heat or electricity while others are insulators? Why adding just a small amount of carbon to iron results in an alloy that is so much stronger than the base metal? In this course, you will learn how a material’s properties are determined by the microstructure of the material, which is in turn determined by composition and the processing that the material has undergone.
(1,268 avis)
Détails à connaître
Ajouter à votre profil LinkedIn
20 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 6 modules dans ce cours
This module will introduce the core principles of materials science. Topics that will be covered include the different general material types (metal, ceramic, polymer, etc.) and the properties associated with each type, some methods that are used to experimentally determine and quantify a material's properties, and how a materials engineer might go about choosing a suitable material for a simple application. This module also introduces the concept of the microstructure-processing-properties relationship which is at the heart of all materials science.
Inclus
14 vidéos4 lectures2 devoirs
In this module, we will discuss the structure of the atom, how atoms interact with each other, and how those interactions affect material properties. We will explore how the types of atoms present in a material determine what kind of bonding occurs, what differentiates the three types of primary bonds - metallic, ionic, and covalent, and the implications of the type of bonding on the material microstructure. You will learn how atoms arrange themselves as a natural result of their size and bonding. This knowledge will provide you with a foundation for understanding the relationship between a material's microstructure and its properties.
Inclus
18 vidéos3 lectures4 devoirs
This module covers how atoms are arranged in crystalline materials. Many of the materials that we deal with on a daily basis are crystalline, meaning that they are made up of a regularly repeating array of atoms. The "building block" of a crystal, which is called the Bravais lattice, dtermines some of the physical properties of a material. An understanding of these crystallographic principles will be vital to discussions of defects and diffusion, which are covered in the next module.
Inclus
21 vidéos2 lectures4 devoirs
In the previous module, we learned how the lattice structure of a crystalline material in part determines the properties of that material. In this module, we will begin to learn how defects - deviations from the expected microstructure - also have a large effect on properties. This module covers one-dimensional, or point, defects which can be missing atoms (vacancies) or excess atoms (interstitial solution) or the wrong type of atom at a lattice point (substitutional solution). Building on these concepts, part of this module will cover diffusion - the movement of atoms through the crystal structure.
Inclus
19 vidéos2 lectures3 devoirs
This module covers two- and three-dimensional defects such as dislocations, grain boundaries, and precipitates. The discussion extends to explain how deformation of a material is accommodated at the microscopic level. We will finish by addressing how the presence and properties of defects can increase or decrease the strength of a material.
Inclus
23 vidéos2 lectures4 devoirs
In this module, we discuss materials that are not fully crystalline, such as polymers, rubbers, and glasses. You will learn how the absence of crystallinity affects the behavior of these materials and what factors affect their formation and properties. Lessons include discussions of the microstructure and defects in amorphous materials, partial cystallinity in polymers, and demonstrations of materials exhibiting ductile and brittle behavior at different temperatures.
Inclus
24 vidéos3 lectures3 devoirs
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Mechanical Engineering
University of Colorado Boulder
École Polytechnique
University of Michigan
Dartmouth College
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 1268
1 268 avis
- 5 stars
80,73 %
- 4 stars
15,88 %
- 3 stars
2,67 %
- 2 stars
0,23 %
- 1 star
0,47 %
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.