Machine learning is the study that allows computers to adaptively improve their performance with experience accumulated from the data observed. Our two sister courses teach the most fundamental algorithmic, theoretical and practical tools that any user of machine learning needs to know. This first course of the two would focus more on mathematical tools, and the other course would focus more on algorithmic tools. [機器學習旨在讓電腦能由資料中累積的經驗來自我進步。我們的兩項姊妹課程將介紹各領域中的機器學習使用者都應該知道的基礎演算法、理論及實務工具。本課程將較為著重數學類的工具,而另一課程將較為著重方法類的工具。]
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
機器學習基石上 (Machine Learning Foundations)---Mathematical Foundations
Instructeur : 林軒田
47 879 déjà inscrits
Inclus avec
(921 avis)
Compétences que vous acquerrez
- Catégorie : Decision Stump
- Catégorie : Perceptron
- Catégorie : Machine Learning
- Catégorie : Vc Dimension
Détails à connaître
Ajouter à votre profil LinkedIn
2 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 8 modules dans ce cours
what machine learning is and its connection to applications and other fields
Inclus
5 vidéos5 lectures
your first learning algorithm (and the world's first!) that "draws the line" between yes and no by adaptively searching for a good line based on data
Inclus
4 vidéos
learning comes with many possibilities in different applications, with our focus being binary classification or regression from a batch of supervised data with concrete features
Inclus
4 vidéos
learning can be "probably approximately correct" when given enough statistical data and finite number of hypotheses
Inclus
4 vidéos1 devoir
what we pay in choosing hypotheses during training: the growth function for representing effective number of choices
Inclus
4 vidéos
test error can approximate training error if there is enough data and growth function does not grow too fast
Inclus
4 vidéos
learning happens if there is finite model complexity (called VC dimension), enough data, and low training error
Inclus
4 vidéos
learning can still happen within a noisy environment and different error measures
Inclus
4 vidéos1 devoir
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
DeepLearning.AI
Rice University
Duke University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 921
921 avis
- 5 stars
92,61 %
- 4 stars
5,97 %
- 3 stars
0,65 %
- 2 stars
0,43 %
- 1 star
0,32 %
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.