Packt
Advanced Generative Adversarial Networks (GANs)

Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Packt

Advanced Generative Adversarial Networks (GANs)

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Avancées

Expérience recommandée

12 heures pour terminer
3 semaines à 4 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Avancées

Expérience recommandée

12 heures pour terminer
3 semaines à 4 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • Understand the principles and architecture of GANs

  • Explain how to implement and train GAN models for image synthesis

  • Apply techniques to optimize GAN models for improved performance

  • Evaluate and interpret GAN-generated images

Compétences que vous acquerrez

  • Catégorie : Keras
  • Catégorie : Generative Adversarial Networks
  • Catégorie : Deep Learning
  • Catégorie : TensorFlow
  • Catégorie : AI Image Synthesis

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

septembre 2024

Évaluations

15 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Keras Deep Learning & Generative Adversarial Networks (GAN)
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable
Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 42 modules dans ce cours

In this module, we will delve into the process of transfer learning using the ResNet50 model on Google Colab's GPU. You will learn step-by-step how to harness the power of pre-trained models for image classification tasks, optimizing performance with Google Colab's robust computing resources.

Inclus

1 vidéo2 lectures

In this module, we will delve into the captivating world of neural networks, exploring some of the most popular and influential types. You will learn about feedforward neural networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs), understanding their architecture, strengths, and applications.

Inclus

1 vidéo

In this module, we will embark on a journey into the realm of Generative Adversarial Networks (GANs), an innovative and powerful concept in machine learning and artificial intelligence. You will gain insights into the core components and the groundbreaking applications of GANs.

Inclus

1 vidéo1 devoir

In this module, we will delve into a practical example of transpose convolution, also known as deconvolution, using a grayscale image. You will learn to assemble and process images using Keras' Sequential class, converting images to NumPy arrays, and performing deconvolution operations.

Inclus

3 vidéos

In this module, we will delve into the intricacies of the Generator and Discriminator mechanisms in GANs. You will gain a comprehensive understanding of how these core components operate and interact to enable the functionality of GANs.

Inclus

1 vidéo

In this module, we will dive into the world of fully connected simple GANs using the MNIST dataset. You will receive a comprehensive introduction to the project setup and the foundational concepts of implementing GANs with the MNIST dataset.

Inclus

1 vidéo1 devoir

In this module, we will embark on the critical phase of loading the MNIST dataset for our fully connected GAN. You will learn how to prepare and load data, setting the foundation for robust model training.

Inclus

1 vidéo

In this module, we will explore the process of defining the Generator function for a fully connected GAN. You will learn to structure and organize the project, transitioning from planning to code implementation.

Inclus

2 vidéos

In this module, we will define the Discriminator function for our fully connected GAN. You will learn how to create this critical component, completing the foundation of the GAN architecture.

Inclus

2 vidéos1 devoir

In this module, we will unveil the pivotal process of combining the Generator and Discriminator models. You will learn to merge these key components, enabling the GAN's image generation capabilities.

Inclus

1 vidéo

In this module, we will guide you through the process of compiling both the Discriminator and combined GAN models. You will learn to configure these crucial components, bridging the gap between theory and implementation.

Inclus

1 vidéo

In this module, we will delve into the training process of the Discriminator model. You will learn to construct training loops and optimize the Discriminator, enhancing its ability to distinguish real images from generated ones.

Inclus

3 vidéos1 devoir

In this module, we will demystify the process of training the Generator model. You will learn to optimize its parameters, implement backpropagation and gradient descent, and understand the loss functions involved in refining the Generator's abilities.

Inclus

1 vidéo

In this module, we will guide you through capturing and storing crucial training metrics at specific intervals. You will learn to save logs, creating a detailed record of the GAN's progress for analysis and decision-making.

Inclus

1 vidéo

In this module, we will guide you through the technique of plotting logs at intervals. You will learn to visualize the progression of the GAN's training, interpreting the plotted metrics to understand and analyze model performance.

Inclus

1 vidéo1 devoir

In this module, we will focus on displaying generated sample images. You will learn to enhance the graph by visualizing generated images, monitoring the GAN's output quality during iterations, and analyzing the visual progress of the training.

Inclus

2 vidéos

In this module, we will navigate the process of saving the trained Generator model. You will learn to preserve the Generator's learned features and weights, enabling future use and continuous generation of new content.

Inclus

1 vidéo

In this module, we will guide you through the process of generating fake images using a saved GAN model. You will learn to load and utilize the pre-trained model, creating synthetic images and exploring the creative possibilities of GANs.

Inclus

1 vidéo1 devoir

In this module, we will explore the differences between fully connected GANs and deep convolutional GANs (DCGANs). You will learn to compare their architectures, understand their strengths and applications, and analyze how the choice of GAN type affects image synthesis quality.

Inclus

1 vidéo

In this module, we will guide you through the steps of preparing and loading the MNIST handwritten digits dataset. You will learn to set the stage for training a DCGAN, exploring the creative potential of this iconic dataset.

Inclus

1 vidéo

In this module, we will define the Generator function for a deep convolutional GAN. You will learn to adapt previous code for DCGANs and implement the Generator function, laying the groundwork for intricate image generation.

Inclus

2 vidéos1 devoir

In this module, we will guide you through defining the Discriminator function for a DCGAN. You will learn to design this critical component, understanding its architecture and principles to improve GAN performance.

Inclus

1 vidéo

In this module, we will guide you through the process of combining and compiling the DCGAN model. You will learn to merge the Generator and Discriminator components, optimizing the model for intricate and realistic image generation.

Inclus

1 vidéo

In this module, we will delve into the intricate process of training the DCGAN model. You will learn to implement advanced deep learning techniques, analyzing the results to refine and enhance the image generation process.

Inclus

1 vidéo1 devoir

In this module, we will explore training the DCGAN model using Google Colab's GPU. You will learn to leverage the robust computing power of Google Colab to optimize and enhance the efficiency and speed of the training process.

Inclus

1 vidéo

In this module, we will guide you through the steps of preparing and loading the Fashion MNIST dataset. You will learn to set the stage for training a DCGAN, exploring the potential for generating fashion-related images.

Inclus

1 vidéo

In this module, we will guide you through training the DCGAN model on the Fashion MNIST dataset using Google Colab's GPU. You will learn to implement techniques to optimize model performance, generating high-quality fashion images with the trained model.

Inclus

1 vidéo1 devoir

In this module, we will explore loading the CIFAR-10 dataset and defining the Generator function. You will learn to prepare and load the dataset, designing the Generator function to enable intricate image generation with DCGANs.

Inclus

2 vidéos

In this module, we will dive into defining the Discriminator function for a DCGAN using the CIFAR-10 dataset. You will learn to design and implement a robust Discriminator, enhancing the effectiveness of image classification.

Inclus

1 vidéo

In this module, we will provide a comprehensive walkthrough of training the DCGAN model on the CIFAR-10 dataset. You will learn to implement deep learning techniques and analyze the results to refine and improve the model.

Inclus

1 vidéo1 devoir

In this module, we will guide you through training the DCGAN model on the CIFAR-10 dataset using Google Colab's GPU. You will learn to optimize the training process, leveraging robust computing power to generate high-quality images with the trained model.

Inclus

1 vidéo

In this module, we will explore the fundamental differences between Vanilla GANs and Conditional GANs. You will learn to compare their architectures, understand their training objectives and applications, and explore the unique strengths and purposes of each approach.

Inclus

1 vidéo

In this module, we will embark on defining the basic Generator function for a Conditional GAN. You will learn the importance of conditional data and implement the Generator function to enable controlled and realistic data generation.

Inclus

1 vidéo1 devoir

In this module, we will delve into the crucial aspect of embedding labels into generated images. You will learn to enhance the Generator's capability by embedding labels, enabling targeted and contextually relevant image generation.

Inclus

2 vidéos

In this module, we will guide you through defining the basic Discriminator function for a Conditional GAN. You will learn to design this foundational component, understanding its role and implementing it for effective image classification.

Inclus

1 vidéo

In this module, we will explore the technique of enhancing the Discriminator through label embedding. You will learn to boost the discriminative power of the GAN by embedding labels, improving the effectiveness of your GAN-based projects.

Inclus

1 vidéo1 devoir

In this module, we will focus on combining and compiling the Conditional GAN model. You will learn to merge the Generator and Discriminator components, optimizing the model for generating realistic and controlled data samples.

Inclus

1 vidéo

In this module, we will progress to the training phase of the Conditional GAN model. You will learn to train both the Generator and Discriminator, implementing advanced techniques and analyzing results to refine and improve model performance.

Inclus

2 vidéos

In this module, we will showcase the process of generating and displaying images with the trained Conditional GAN. You will learn to monitor the quality and relevance of generated images, analyzing the visual output to understand the GAN's capabilities.

Inclus

1 vidéo1 devoir

In this module, we will delve into training the Conditional GAN model on the MNIST dataset using Google Colab's GPU. You will learn to optimize training with robust computing resources, generating high-quality images with the trained model.

Inclus

1 vidéo

In this module, we will guide you through training the Conditional GAN model on the Fashion MNIST dataset using Google Colab's GPU. You will learn to enhance the training process with powerful computing resources, generating high-quality fashion images.

Inclus

1 vidéo1 devoir

In this final module, we will explore other popular GANs and their applications. You will gain access to source code links and repositories for further learning, enhancing your understanding and implementation of GANs in various projects.

Inclus

1 vidéo1 lecture1 devoir

Instructeur

Packt - Course Instructors
Packt
375 Cours16 069 apprenants

Offert par

Packt

Recommandé si vous êtes intéressé(e) par Machine Learning

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions