This course teaches you to use Python, AI, machine learning, and deep learning to build recommender systems, from simple engines to hybrid ensemble recommenders. You'll start with an introduction to recommender systems and Python, evaluate systems, and explore the recommender engine framework.
Building Recommender Systems with Machine Learning and AI
Instructeur : Packt - Course Instructors
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Analyze and evaluate recommendation algorithms using Python.
Create session-based recommendations using recurrent neural networks.
Implement large-scale recommendation computations with Apache Spark.
Compétences que vous acquerrez
- Catégorie : Deep Learning
- Catégorie : Machine Learning
- Catégorie : Collaborative Filtering
- Catégorie : AI
- Catégorie : Recommender Systems
Détails à connaître
Ajouter à votre profil LinkedIn
septembre 2024
6 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 14 modules dans ce cours
In this module, we will lay the foundation for the course by setting up the development environment with Anaconda, familiarizing you with the course materials, and introducing you to creating simple movie recommendations.
Inclus
7 vidéos1 lecture
In this module, we will cover the essentials of Python programming, including basic syntax, data structures, and functions. We will also delve into Boolean expressions and loops through hands-on challenges.
Inclus
4 vidéos
In this module, we will explore various methods for evaluating recommender systems, including accuracy metrics, hit rates, and diversity measures. We will also review practical examples and quizzes to reinforce learning.
Inclus
9 vidéos1 devoir
In this module, we will focus on the architecture of a recommender engine framework, guiding you through code walkthroughs and activities to implement and test various recommendation algorithms.
Inclus
4 vidéos
In this module, we will dive into content-based filtering methods, exploring metrics like cosine similarity and KNN. We will also conduct hands-on activities to produce and evaluate movie recommendations.
Inclus
6 vidéos
In this module, we will cover neighborhood-based collaborative filtering techniques, including user-based and item-based methods. Practical exercises and activities will help solidify your understanding of these approaches.
Inclus
13 vidéos1 devoir
In this module, we will explore matrix factorization methods like PCA and SVD, demonstrating how to apply these techniques to movie rating datasets. We will also focus on improving these methods through hyperparameter tuning.
Inclus
6 vidéos
In this module, we will provide an optional deep dive into deep learning, covering fundamental concepts, neural network architectures, and practical implementations using TensorFlow and Keras.
Inclus
25 vidéos
In this module, we will focus on applying deep learning to recommender systems, exploring techniques like Restricted Boltzmann Machines (RBM) and auto-encoders. We will also cover practical evaluation and tuning methods.
Inclus
19 vidéos1 devoir
In this module, we will explore methods to scale up recommendation systems, including using Apache Spark for large-scale data processing and Amazon's DSSTNE and SageMaker for deploying scalable machine learning models.
Inclus
11 vidéos
In this module, we will tackle real-world challenges faced by recommender systems, such as the cold start problem, filtering bubbles, and fraud. We will also explore solutions to these issues through practical exercises.
Inclus
11 vidéos1 devoir
In this module, we will study real-world case studies of YouTube and Netflix, focusing on their recommendation strategies and the use of deep learning and hybrid approaches to enhance recommendation quality.
Inclus
4 vidéos
In this module, we will explore hybrid recommendation approaches, combining multiple algorithms to improve recommendation accuracy and diversity. Practical exercises will guide you through implementing and evaluating hybrid systems.
Inclus
2 vidéos1 devoir
In this module, we will wrap up the course by summarizing key points, providing resources for further study, and introducing advanced topics and emerging trends in recommender systems to keep you up-to-date.
Inclus
1 vidéo1 devoir
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
University of California San Diego
DeepLearning.AI
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.