Unlock the power of deep learning and elevate your machine learning skills with our comprehensive deep neural networks course. This hands-on program covers deep learning fundamentals, including artificial neural networks, activation functions, bias, data, and loss functions.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Expérience recommandée
Ce que vous apprendrez
Explain the fundamentals of deep learning and neural networks.
Use Python to build and train your own deep neural network models.
Differentiate between various activation functions and optimization algorithms.
Assess techniques for improving model performance and reducing overfitting.
Compétences que vous acquerrez
- Catégorie : Deep Learning
- Catégorie : Machine Learning
- Catégorie : Data Science
- Catégorie : TensorFlow
- Catégorie : Artificial Intelligence
Détails à connaître
Ajouter à votre profil LinkedIn
septembre 2024
7 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 17 modules dans ce cours
In this module, we will welcome you to the course and provide an overview of deep learning. We will explain the course objectives, the structure of the content, and the skills and knowledge you will acquire throughout the course.
Inclus
2 vidéos1 lecture
In this module, we will lay the foundation for understanding deep learning by covering essential topics such as artificial neural networks, activation functions, and bias. We will also explore the role of data, various applications, models, loss functions, and learning algorithms crucial for model performance.
Inclus
8 vidéos
In this module, we will provide a crash course on the basics of Python programming, essential for deep learning. You will learn how to install and use Jupyter Notebook and Google Colab, understand data types, containers, control statements, and implement functions and classes in Python.
Inclus
7 vidéos1 devoir
In this module, we will delve into Python libraries crucial for data science. You will learn how to handle arrays with NumPy, manipulate data using Pandas, and visualize data with Matplotlib. We will cover topics from basic data structures to advanced data cleaning and plotting techniques.
Inclus
8 vidéos
In this module, we will explore the MP Neuron model, also known as the McCulloch-Pitts model. You will gain an understanding of the data intuition, learn how to find parameters, and develop a mathematical intuition for this fundamental concept in neural networks.
Inclus
4 vidéos
In this module, we will focus on implementing the MP Neuron model in Python. You will learn how to import datasets, apply train-test split, and modify data. By the end of this section, you will have created an MP Neuron class from scratch and practiced with an assignment.
Inclus
5 vidéos1 devoir
In this module, we will summarize the key concepts and practical implementation of the MP Neuron model. We will review the important points and ensure you have a solid understanding through a recap and evaluation assignments.
Inclus
1 vidéo
In this module, we will cover the Perceptron model, discussing its representation, loss function, and parameter updates. You will understand how the update rule works and see its practical implementation in programs.
Inclus
5 vidéos
In this module, we will implement the Perceptron model in Python. You will learn to program the model and visualize its accuracy and performance with increasing epochs, enhancing your practical skills in deep learning.
Inclus
2 vidéos1 devoir
In this module, we will transition from Perceptron to Sigmoid Neuron. You will learn about the limitations of the Perceptron, the benefits of the Sigmoid Neuron, and gain insights into gradient descent for model optimization.
Inclus
8 vidéos
In this module, we will implement the Sigmoid Neuron using Python. You will learn to download and standardize datasets, and create a class for the Sigmoid activation function, solidifying your understanding through practical assignments.
Inclus
4 vidéos
In this module, we will cover basic probability concepts. You will learn about random variables, their importance, types, and probability distribution tables, as well as the concept of entropy loss in the context of deep learning.
Inclus
5 vidéos1 devoir
In this module, we will explore deep neural networks. You will learn why they are important, and through practical programming, understand the concept of linear separation of data, preparing you for more complex deep learning models.
Inclus
2 vidéos
In this module, we will delve into the Universal Approximation Theorem. You will learn its significance, confirm its effectiveness with practical examples, and discuss the challenges of building deep neural networks from scratch.
Inclus
4 vidéos
In this module, we will focus on TensorFlow 2.x for deep learning. You will learn to build, train, and evaluate neural networks using TensorFlow, with a recap of deep learning concepts and a summary to prepare for more advanced topics.
Inclus
7 vidéos1 devoir
In this module, we will cover activation functions in deep learning. You will learn about different activation functions provided by TensorFlow and understand common network configurations used in deep learning tasks.
Inclus
4 vidéos
In this module, we will apply deep learning concepts. You will transition from shallow to deep learning, understand Keras basics, solve classification and regression problems, and explore advanced TensorFlow techniques and subclassing methods.
Inclus
8 vidéos2 devoirs
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Mobile and Web Development
Alberta Machine Intelligence Institute
University of Glasgow
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.