Embark on a journey through the exciting world of machine learning, starting with the foundations of Python programming. You'll begin by mastering Python’s essential data types, loops, and decision-making constructs, gaining a strong coding foundation. As you progress, you’ll dive into machine learning, exploring how it mimics human learning, processes datasets, and applies critical concepts like outliers, model training, and overfitting.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Machine Learning: Random Forest with Python from Scratch©
Instructeur : Packt - Course Instructors
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Understand and develop Python programs using fundamental data types and control structures
Apply machine learning concepts to analyze and process datasets effectively
Implement and execute Random Forest algorithms to build predictive models
Analyze and visualize data to clean and enhance model accuracy
Compétences que vous acquerrez
- Catégorie : Random Forest
- Catégorie : Python Programming
- Catégorie : NumPy
- Catégorie : Machine Learning
- Catégorie : Data Science
Détails à connaître
Ajouter à votre profil LinkedIn
octobre 2024
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 5 modules dans ce cours
In this module, we will introduce the course and its objectives. You will gain insights into the benefits of learning machine learning, the evolution of this field, and what the course offers in terms of Python and machine learning knowledge.
Inclus
4 vidéos1 lecture
In this module, we will explore the fundamentals of Python programming. You will learn about Python’s various data types, logical and comparison operators, control structures, and basic functions. By the end of this module, you will apply your knowledge to create a simple calculator project.
Inclus
18 vidéos1 devoir
In this module, we will delve into the basics of machine learning. You will learn about the significance of datasets, the differences between labels and features, and how models are trained. The module also covers critical concepts like overfitting, underfitting, and data formats essential for machine learning.
Inclus
13 vidéos1 devoir
In this module, we will take a step-by-step approach to understanding and implementing Random Forest, a powerful machine-learning algorithm. You will learn to use Python libraries like NumPy and Pandas for data manipulation and Matplotlib for visualization. The module will guide you through building and tuning a Random Forest model to achieve high accuracy.
Inclus
26 vidéos1 devoir
In this module, we will summarize the entire course and highlight the most important concepts and skills you have acquired. The concluding remarks will help you reflect on how to apply Python and machine learning techniques to solve practical problems in the future.
Inclus
1 vidéo1 devoir
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
University of Colorado Boulder
University of Leeds
University of Leeds
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.