Embark on a comprehensive learning journey starting with fundamental Python programming, including installation, variable manipulation, and essential data structures like lists, tuples, and dictionaries. Gain proficiency in numerical computations with NumPy and data manipulation with Pandas.
Prerequisites and Advanced Machine Learning for NLP
Ce cours fait partie de Spécialisation Natural Language Processing with Real-World Projects
Instructeur : Packt - Course Instructors
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Install and set up Python and Anaconda for NLP projects.
Understand and evaluate linear regression and gradient descent methods.
Visualize data effectively with Matplotlib and Seaborn.
Apply machine learning algorithms like linear regression and KNN to NLP tasks.
Compétences que vous acquerrez
- Catégorie : Linear Regression
- Catégorie : NumPy
- Catégorie : Machine Learning
- Catégorie : Natural Language Processing
- Catégorie : Data Science
Détails à connaître
Ajouter à votre profil LinkedIn
septembre 2024
5 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 11 modules dans ce cours
In this module, we will introduce the foundational aspects of Python, including installation and basic programming concepts. You will learn about variables, operations, loops, functions, and data structures such as strings, lists, tuples, sets, and dictionaries, preparing you for more advanced Python programming tasks.
Inclus
18 vidéos2 lectures
In this module, we will cover the essential concepts of NumPy, focusing on array operations. You will learn how to perform various computations and manipulations with NumPy arrays, enabling efficient data handling in Python.
Inclus
3 vidéos
In this module, we will dive into Pandas, a powerful data manipulation library. You will learn about Series and DataFrames, data operations, indexing, merging, and pivot tables, equipping you with the skills to handle complex data analysis tasks.
Inclus
12 vidéos1 devoir
In this module, we will explore linear algebra concepts crucial for machine learning. You will learn about vectors and matrices, perform various operations, and understand how to extend these concepts to higher dimensions, forming a solid mathematical foundation for advanced topics.
Inclus
5 vidéos
In this module, we will focus on data visualization techniques using Matplotlib and Seaborn. You will learn how to create and interpret visualizations, work on a case study, and apply these techniques to time series data, enhancing your ability to present and analyze data visually.
Inclus
4 vidéos
In this module, we will introduce you to machine learning and linear regression. You will learn about the principles and mathematics behind linear regression, as well as how to apply it to real-world data through case studies, preparing you for more complex machine learning algorithms.
Inclus
10 vidéos1 devoir
In this module, we will cover gradient descent, a fundamental optimization technique. You will learn about its prerequisites, cost functions, optimization methods, and the differences between closed-form solutions and gradient descent, providing a strong basis for learning advanced machine learning algorithms.
Inclus
8 vidéos
In this module, we will introduce classification and K-Nearest Neighbors (KNN). You will learn about classification principles, how to measure KNN's accuracy and effectiveness, and how to apply KNN to various problems, with practical case studies to reinforce your understanding.
Inclus
14 vidéos
In this module, we will delve into logistic regression, an essential classification technique. You will learn about the Sigmoid function, log odds, and how to apply logistic regression to a case study, providing a robust understanding of this powerful tool.
Inclus
4 vidéos1 devoir
In this module, we will explore advanced machine learning algorithms and concepts. You will learn about regularization techniques, model selection, and performance evaluation through practical case studies, enhancing your ability to implement and optimize advanced models.
Inclus
10 vidéos
In this module, we will introduce deep learning, covering its history, key concepts, and neural network structures. You will learn about training neural networks, activation functions, and representations, providing a comprehensive introduction to this transformative field in machine learning.
Inclus
10 vidéos1 lecture2 devoirs
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
University of California, Irvine
University of Pennsylvania
Google Cloud
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.