Explore the dynamic world of satellite remote sensing data through a comprehensive bootcamp that equips you with essential skills using open-source tools. Beginning with the fundamentals, you'll be introduced to the core concepts of remote sensing, including various data types and the tools essential for their analysis, such as R and QGIS. As you progress, you will delve into the intricacies of optical remote sensing, learning to download, preprocess, and interpret Landsat data while mastering tools like the Semi-Automatic Classification Plugin in QGIS.
Satellite Remote Sensing Data Bootcamp With Opensource Tools
Instructeur : Packt - Course Instructors
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Analyze different types of satellite remote sensing data
Preprocess optical data using atmospheric correction techniques
Classify remote sensing data using both supervised and unsupervised methods
Handle SAR data, including preprocessing and speckle filtering
Compétences que vous acquerrez
- Catégorie : Google Earth Engine
- Catégorie : Geospatial Analysis
- Catégorie : Remote Sensing
- Catégorie : QGIS, R Programming
- Catégorie : Google Earth Engine
- Catégorie : Data Bootcamp
Détails à connaître
Ajouter à votre profil LinkedIn
octobre 2024
3 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 6 modules dans ce cours
In this module, we will lay the groundwork for your journey into satellite remote sensing data analysis. You'll begin by learning about the course structure, then explore the fundamentals of remote sensing, different data types, and the essential tools you will use throughout the course. By the end of this module, you'll have a solid understanding of the basics and be ready to dive deeper into the practical aspects of the field.
Inclus
7 vidéos1 lecture
In this module, we will delve into the world of optical remote sensing data, starting with the fundamental principles that govern its collection. You'll examine the different types of optical data and how they are used, particularly focusing on Landsat data. Additionally, you'll explore the specifics of Landsat sensors and gain hands-on experience in using QGIS to download and view this data. By the end of this section, you'll be equipped with the knowledge and skills needed to work with optical remote sensing data in your analyses.
Inclus
6 vidéos
In this module, we will focus on the crucial steps involved in pre-processing optical remote sensing data. You'll learn why pre-processing is essential, particularly for improving data accuracy. The module will guide you through performing atmospheric correction on Landsat data using R, and introduce you to the Semi-Automatic Classification Plugin in QGIS for efficient pre-processing. Additionally, you'll assess the quality of atmospherically corrected outputs and explore the practical applications of pre-processed data. By the end of this section, you'll have the skills to refine raw satellite data for meaningful analysis.
Inclus
6 vidéos1 devoir
In this module, we will explore the diverse applications of optical remote sensing data across various analytical processes. You'll begin by mastering band manipulation in QGIS, followed by the application of band math to derive critical insights. The module will introduce you to texture indices and tasseled cap transformations, offering both theoretical knowledge and practical implementation using GRASS GIS and ESA SNAP. Additionally, you'll delve into vegetation indices and learn how to reduce data dimensionality for more efficient analysis. By the end of this section, you'll be well-versed in multiple advanced techniques for leveraging optical data in your projects
Inclus
13 vidéos
In this module, we will delve into the classification of remote sensing satellite data, covering both unsupervised and supervised methods. You’ll begin by exploring the theory behind these approaches, followed by practical applications using ESA SNAP and QGIS. The module also introduces machine learning concepts and their integration into remote sensing classification, guiding you through creating training data and applying advanced algorithms to satellite imagery. By the end of this section, you’ll be equipped with comprehensive skills to classify and analyze remote sensing data accurately and efficiently
Inclus
9 vidéos
In this module, we will explore active remote sensing data, focusing on Synthetic Aperture Radar (SAR). You'll begin by understanding the reasons for using active remote sensing over passive methods, with a particular emphasis on SAR technology. The module will guide you through the process of obtaining ALOS PALSAR data and applying essential pre-processing steps. You'll also learn to filter speckles from SAR imagery to improve data quality, and finally, you'll extract back-scatter values, a critical step for interpreting SAR data. By the end of this section, you'll have a solid foundation in working with active remote-sensing data
Inclus
5 vidéos2 devoirs
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Environmental Science and Sustainability
École Polytechnique Fédérale de Lausanne
University of Toronto
UNSW Sydney (The University of New South Wales)
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.