École Polytechnique

Optique non-linéaire

Manuel Joffre
Vincent  Kemlin

Instructeurs : Manuel Joffre

8 277 déjà inscrits

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.7

(55 avis)

25 heures pour terminer
3 semaines à 8 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.7

(55 avis)

25 heures pour terminer
3 semaines à 8 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Évaluations

16 devoirs

Enseigné en Français

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 11 modules dans ce cours

Après une brève description de l’origine microscopique de la réponse linéaire d’un matériau, ce chapitre introduira l’origine physique de l’absorption et de l’indice de réfraction. On montrera ensuite comment un régime d’excitation plus élevé impose de sortir du cadre d’une réponse strictement linéaire. Enfin, une introduction au langage Scilab permettra de disposer d’un outil de calcul numérique qui sera utilisé dans toute la suite du cours.

Inclus

11 vidéos2 lectures1 devoir

On introduira successivement les séries et les transformées de Fourier. L’analyse de Fourier d’un signal sonore nous permettra d’illustrer un certain nombre de propriétés utiles comme par exemple la relation entre largeur temporelle et largeur spectrale, qui sera approfondie en TD. On introduira également des notions importantes comme le retard de groupe et la dérive de fréquence. Enfin, la transformée de Fourier discrète permettra d’illustrer ces notions de manière numérique.

Inclus

10 vidéos2 lectures1 devoir

On établira l’équation de propagation en régime linéaire à partir des équations de Maxwell, puis on discutera plus en détail le cas particulier d’une onde plane. On étudiera ainsi la propagation d’une impulsion brève, dominée par la dispersion chromatique de l’indice de réfraction. Le rôle central joué par la phase spectrale sera illustrée en TD et par des expériences d’interférométrie.

Inclus

8 vidéos3 lectures2 devoirs

Ce chapitre est consacré au cas particulier d’un faisceau monochromatique, ce qui permet d’étudier en détail l’évolution du profil spatial au cours de la propagation dans le cadre de l’approximation paraxiale. On développera notamment l’analogie spatio-temporelle, qui permettra de faire le parallèle entre la diffraction d’un faisceau lumineux et la dispersion d’une impulsion brève.

Inclus

5 vidéos1 lecture2 devoirs

On aborde ici le régime non-linéaire, qui sera traité tout d’abord dans le cas d’une superposition d’ondes monochromatiques. On obtient alors un système d’équations différentielles non-linéaires couplées. Puis, dans le cas d’une impulsion brève, on établira l’équation de propagation non-linéaire dans le cadre de l’approximation de l’onde lentement variable. On discutera enfin de l’influence de la symétrie du matériau sur la nature de sa réponse optique non-linéaire.

Inclus

5 vidéos1 lecture1 devoir

L’optique non-linéaire du deuxième ordre donne lieu à des processus comme l’addition et la différence de fréquences. Ce chapitre porte sur le cas particulier du doublage de fréquence, ou génération de seconde harmonique. On introduira notamment la notion d’accord de phase, qui peut être obtenu par exemple à l’aide d’un matériau biréfringent. La méthode alternative dite du quasi accord de phase sera développée en TD.

Inclus

9 vidéos2 lectures2 devoirs

Toujours dans le cadre de l’optique non-linéaire du deuxième ordre, le mélange à trois ondes permet de comprendre l’origine physique du phénomène d’amplification paramétrique, qui permet notamment de concevoir des sources lumineuses accordables sur une très grande gamme spectrale. Les applications en optique quantique seront également brièvement évoquées. Le TD portera sur le doublage de fréquence en régime fort.

Inclus

9 vidéos2 lectures2 devoirs

L’optique non-linéaire du troisième ordre donne lieu à une très grande variété de phénomènes physiques, dont l’effet Kerr optique constitue un exemple emblématique résultant de la variation de l’indice de réfraction avec l’intensité lumineuse. On étudiera ici les conséquences dans le domaine spatial (autofocalisation) et spectro-temporel (génération de continuum spectral). Le TD portera sur l’effet Kerr optique effectif résultant d’une cascade de deux effets du second ordre.

Inclus

9 vidéos2 lectures1 devoir

Ce chapitre porte sur la saturation d’absorption, l’absorption à deux photons, la fluorescence par excitation à deux photons et la génération de troisième harmonique. Les applications de certains de ces phénomènes à la microscopie non-linéaire d’objets biologiques seront illustrées par des résultats expérimentaux obtenus au Laboratoire d’Optique et Biosciences.

Inclus

8 vidéos1 lecture1 devoir

Ce dernier chapitre introduit le phénomène à l’origine du fonctionnement stationnaire d’un laser femtoseconde, qui est un effet de type soliton permettant une compensation parfaite entre la dispersion de vitesse de groupe et l’effet Kerr optique. Les applications en métrologie à l’aide de peignes de fréquences seront également évoquées, de même que l’amplification à dérive de fréquence.

Inclus

8 vidéos1 lecture

The description goes here

Inclus

3 devoirs

Instructeurs

Évaluations de l’enseignant
4.9 (10 évaluations)
Manuel Joffre
École Polytechnique
2 Cours18 444 apprenants
Vincent  Kemlin
École Polytechnique
1 Cours8 277 apprenants

Offert par

École Polytechnique

Recommandé si vous êtes intéressé(e) par Electrical Engineering

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’

Avis des étudiants

Affichage de 3 sur 55

4.7

55 avis

  • 5 stars

    90,74 %

  • 4 stars

    3,70 %

  • 3 stars

    3,70 %

  • 2 stars

    0 %

  • 1 star

    1,85 %

ZZ
5

Révisé le 18 févr. 2022

DK
5

Révisé le 6 sept. 2024

EA
5

Révisé le 29 déc. 2020

Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions