IBM
Project: Generative AI Applications with RAG and LangChain

Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
IBM

Project: Generative AI Applications with RAG and LangChain

Ce cours fait partie de plusieurs programmes.

Kang Wang
Wojciech 'Victor' Fulmyk

Instructeurs : Kang Wang

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

9 heures pour terminer
3 semaines à 3 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

9 heures pour terminer
3 semaines à 3 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • Gain practical experience building your own real-world gen AI application that you can talk about in interviews.

  • Get hands-on using LangChain to load documents and apply text splitting techniques with RAG and LangChain to enhance model responsiveness.

  • Create and configure a vector database to store document embeddings and develop a retriever to fetch document segments based on queries.

  • Set up a simple Gradio interface for model interaction and construct a QA bot using LangChain and an LLM to answer questions from loaded documents.

Compétences que vous acquerrez

  • Catégorie : Generative AI applications
  • Catégorie : Retrieval augmented generation (RAG)
  • Catégorie : Vector Database
  • Catégorie : LangChain
  • Catégorie : Gradio
  • Catégorie : Vector database

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

octobre 2024

Évaluations

7 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé

Élaborez votre expertise du sujet

Ce cours est disponible dans le cadre de
Lorsque vous vous inscrivez à ce cours, vous devez également sélectionner un programme spécifique.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable
Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 3 modules dans ce cours

In this module, you will learn all about document loaders from LangChain and then use that knowledge to load your document from various sources. You will also explore the various text splitting strategies with RAG and LangChain and apply them to enhance model responsiveness. Hands-on labs will provide you an opportunity to practice loading documents as well as implement the text-splitting techniques you have learned.

Inclus

3 vidéos3 lectures2 devoirs3 éléments d'application1 plugin

In this module, you will learn how to store embeddings using a vector store and how to use Chroma DB to save embeddings. You’ll gain insights into LangChain retrievers like the Vector Store-Based, Multi-Query, Self-Query, and Parent Document Retriever. In hands-on labs, you’ll prepare and preprocess documents for embedding and use watsonx.ai to generate embeddings for your documents. You’ll use vector databases such as Chroma DB and FAISS to store embeddings generated from textual data using LangChain. Finally, you’ll use various retrievers to efficiently extract relevant document segments from text using LangChain.

Inclus

3 vidéos1 lecture2 devoirs3 éléments d'application2 plugins

In this module, you will learn how to implement RAG to improve retrieval. You will become familiar with Gradio and how to set up a simple Gradio interface to interact with your models. You will also learn how to construct a QA bot to answer questions from loaded documents using LangChain and LLMs. Using hands-on labs, you will have the opportunity to practice setting up a Gradio interface, as well as constructing a QA bot. In the final project, you will build an AI application using RAG and LangChain.

Inclus

1 vidéo4 lectures3 devoirs1 évaluation par les pairs2 éléments d'application4 plugins

Instructeurs

Kang Wang
3 Cours3 418 apprenants

Offert par

IBM

Recommandé si vous êtes intéressé(e) par Machine Learning

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions