En este curso, se explica cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la exactitud de los modelos de AA y cómo escribir modelos de AA para uso escalado.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Ce que vous apprendrez
Diseñar y crear una canalización de datos de entrada de TensorFlow
Usar la biblioteca de tf.data para manipular datos en grandes conjuntos de datos
Usar las APIs secuencial y funcional de Keras para crear modelos simples y avanzados
Entrenar, implementar y llevar a producción modelos de AA a gran escala con Vertex AI
Détails à connaître
Ajouter à votre profil LinkedIn
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 6 modules dans ce cours
En este módulo, se brinda una descripción general del curso y sus objetivos.
Inclus
1 vidéo
En este módulo, se presenta el marco de trabajo de TensorFlow y se ofrece una vista previa de sus componentes principales, así como de la jerarquía general de las API.
Inclus
4 vidéos1 lecture1 devoir
Los datos son un componente esencial de los modelos de aprendizaje automático. Recopilar los datos correctos no es suficiente. También es necesario asegurarse de implementar los procesos adecuados para limpiar, analizar y transformar los datos según sea necesario, de modo que el modelo pueda captar tantos indicadores como sea posible a partir de esos datos. En este módulo, analizamos el entrenamiento con grandes conjuntos de datos mediante tf.data, el trabajo con archivos en la memoria y cómo preparar los datos para el entrenamiento. Después, analizamos las incorporaciones y terminamos con una descripción general del escalamiento de datos con capas de procesamiento previo de tf.keras.
Inclus
10 vidéos1 lecture1 devoir2 éléments d'application
En este módulo, analizamos las funciones de activación y cómo se las necesita para permitir que las redes neuronales profundas registren los aspectos no lineales de los datos. Después, se ofrece una descripción general de las redes neuronales profundas con las APIs secuencial y funcional de Keras. A continuación, describimos la subclasificación de modelos, que ofrece mayor flexibilidad para la creación de modelos. El módulo finaliza con una lección sobre regularización.
Inclus
10 vidéos1 lecture1 devoir2 éléments d'application
En este módulo, describimos cómo entrenar modelos de TensorFlow a gran escala con Vertex AI.
Inclus
3 vidéos1 lecture1 devoir1 élément d'application
Este módulo es un resumen del curso Build, Train, and Deploy ML Models with Keras on Google Cloud.
Inclus
4 lectures
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Software Development
DeepLearning.AI
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.