Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.

Johns Hopkins University

Modeling Data in the Tidyverse

Carrie Wright, PhD
Shannon Ellis, PhD
Stephanie Hicks, PhD

Instructeurs : Carrie Wright, PhD

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
21 heures pour terminer
3 semaines à 7 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
21 heures pour terminer
3 semaines à 7 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • Describe different types of data analytic questions

  • Conduct hypothesis tests of your data

  • Apply linear modeling techniques to answer multivariable questions

  • Apply machine learning workflows to detect complex patterns in your data

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Évaluations

8 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Tidyverse Skills for Data Science in R
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable
Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 11 modules dans ce cours

Developing insights about your organization, business, or research project depends on effective modeling and analysis of the data you collect. Building effective models requires understanding the different types of questions you can ask and how to map those questions to your data. Different modeling approaches can be chosen to detect interesting patterns in the data and identify hidden relationships.

Inclus

16 lectures1 devoir

Inferential Analysis is what analysts carry out after they’ve described and explored their dataset. After understanding your dataset better, analysts often try to infer something from the data. This is done using statistical tests. We discussed a bit about how we can use models to perform inference and prediction analyses. What does this mean?

Inclus

3 lectures1 devoir

Linear models are the most commonly used models in data analysis because of their computational efficiency and their ease of interpretation. Having a solid understanding of linear models and how they work is critical for any work in data science. The tidyverse provides a set of tools for making linear modeling more efficient and streamlined.

Inclus

12 lectures1 devoir

Multiple linear regression is needed when you want to include confounding factors or other predictors in your model for the response. R provides a straightforward way to do this via the formula interface to the lm() function.

Inclus

1 lecture1 devoir

While we’ve focused on linear regression in this lesson on inference, linear regression isn’t the only analytical approach out there. However, it is arguably the most commonly used. And, beyond that, there are many statistical tests and approaches that are slight variations on linear regression, so having a solid foundation and understanding of linear regression makes understanding these other tests and approaches much simpler. For example, what if you didn’t want to measure the linear relationship between two variables, but instead wanted to know whether or not the average observed is different from expectation?

Inclus

3 lectures

Hypothesis testing describes a family of statistical techniques for determining whether the data you collect provides evidence for the value of an unknown parameter of interest. The goal of hypothesis tests is to make inferences while accounting for variability in the data that can lead to spurious results.

Inclus

3 lectures1 devoir1 plugin

Prediction modeling is an essential activity in data science and involves building systems for making predictions based on previously observed data. These models are typically very flexible and can capture a range of different relationships.

Inclus

12 lectures1 devoir

There are incredibly helpful packages available in R thanks to the work of RStudio. As mentioned above, there are hundreds of different machine learning algorithms. The tidymodels R packages have put many of them into a single framework, allowing you to use many different machine learning models easily.

Inclus

5 lectures1 devoir

This case study will demonstrate an approach to building a prediction model for predicting outdoor air pollution concentrations in the United States.

Inclus

17 lectures1 laboratoire non noté

The tidymodels collection of packages can be overwhelming at first glance. Here, we provide a quick summary chart to help navigate all of the packages and when they should be used.

Inclus

1 lecture

In this project, you will practice building models with the tidyverse for classifying consumer complaints data from the Consumer Financial Protection Bureau (CFPB). This project includes both a Peer Review step in which you'll upload R Markdown and knitted HTML files AND a Quiz step in which you'll answer questions about the predictions made by your classification algorithm.

Inclus

1 lecture1 devoir1 évaluation par les pairs

Instructeurs

Carrie Wright, PhD
Johns Hopkins University
7 Cours7 913 apprenants
Shannon Ellis, PhD
Johns Hopkins University
5 Cours6 055 apprenants
Stephanie Hicks, PhD
Johns Hopkins University
5 Cours6 055 apprenants

Offert par

Recommandé si vous êtes intéressé(e) par Data Analysis

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions