Developing insights about your organization, business, or research project depends on effective modeling and analysis of the data you collect. Building effective models requires understanding the different types of questions you can ask and how to map those questions to your data. Different modeling approaches can be chosen to detect interesting patterns in the data and identify hidden relationships.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Modeling Data in the Tidyverse
Ce cours fait partie de Spécialisation Tidyverse Skills for Data Science in R
Instructeurs : Carrie Wright, PhD
Inclus avec
Ce que vous apprendrez
Describe different types of data analytic questions
Conduct hypothesis tests of your data
Apply linear modeling techniques to answer multivariable questions
Apply machine learning workflows to detect complex patterns in your data
Détails à connaître
Ajouter à votre profil LinkedIn
8 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 11 modules dans ce cours
Developing insights about your organization, business, or research project depends on effective modeling and analysis of the data you collect. Building effective models requires understanding the different types of questions you can ask and how to map those questions to your data. Different modeling approaches can be chosen to detect interesting patterns in the data and identify hidden relationships.
Inclus
16 lectures1 devoir
Inferential Analysis is what analysts carry out after they’ve described and explored their dataset. After understanding your dataset better, analysts often try to infer something from the data. This is done using statistical tests. We discussed a bit about how we can use models to perform inference and prediction analyses. What does this mean?
Inclus
3 lectures1 devoir
Linear models are the most commonly used models in data analysis because of their computational efficiency and their ease of interpretation. Having a solid understanding of linear models and how they work is critical for any work in data science. The tidyverse provides a set of tools for making linear modeling more efficient and streamlined.
Inclus
12 lectures1 devoir
Multiple linear regression is needed when you want to include confounding factors or other predictors in your model for the response. R provides a straightforward way to do this via the formula interface to the lm() function.
Inclus
1 lecture1 devoir
While we’ve focused on linear regression in this lesson on inference, linear regression isn’t the only analytical approach out there. However, it is arguably the most commonly used. And, beyond that, there are many statistical tests and approaches that are slight variations on linear regression, so having a solid foundation and understanding of linear regression makes understanding these other tests and approaches much simpler. For example, what if you didn’t want to measure the linear relationship between two variables, but instead wanted to know whether or not the average observed is different from expectation?
Inclus
3 lectures
Hypothesis testing describes a family of statistical techniques for determining whether the data you collect provides evidence for the value of an unknown parameter of interest. The goal of hypothesis tests is to make inferences while accounting for variability in the data that can lead to spurious results.
Inclus
3 lectures1 devoir1 plugin
Prediction modeling is an essential activity in data science and involves building systems for making predictions based on previously observed data. These models are typically very flexible and can capture a range of different relationships.
Inclus
12 lectures1 devoir
There are incredibly helpful packages available in R thanks to the work of RStudio. As mentioned above, there are hundreds of different machine learning algorithms. The tidymodels R packages have put many of them into a single framework, allowing you to use many different machine learning models easily.
Inclus
5 lectures1 devoir
This case study will demonstrate an approach to building a prediction model for predicting outdoor air pollution concentrations in the United States.
Inclus
17 lectures1 laboratoire non noté
The tidymodels collection of packages can be overwhelming at first glance. Here, we provide a quick summary chart to help navigate all of the packages and when they should be used.
Inclus
1 lecture
In this project, you will practice building models with the tidyverse for classifying consumer complaints data from the Consumer Financial Protection Bureau (CFPB). This project includes both a Peer Review step in which you'll upload R Markdown and knitted HTML files AND a Quiz step in which you'll answer questions about the predictions made by your classification algorithm.
Inclus
1 lecture1 devoir1 évaluation par les pairs
Instructeurs
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
Johns Hopkins University
ESSEC Business School
University of Colorado Boulder
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.