In the course "Training AI with Humans", you'll delve into the intersection of machine learning and human collaboration, exploring how to enhance AI performance through effective data annotation and crowdsourcing. You’ll gain a comprehensive understanding of machine learning principles and performance metrics while developing practical skills in using platforms like Amazon Mechanical Turk (AMT) for crowdsourced tasks. This unique approach combines theoretical knowledge with hands-on experience, allowing you to implement Inter-Annotator Agreement (IAA) techniques to ensure high-quality annotated data.
Training AI with Humans
Ce cours fait partie de Spécialisation Social Computing
Instructeur : Ian McCulloh
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Learn to construct and evaluate various machine learning classifiers and performance metrics.
Master the calculation and implications of Inter-Annotator Agreement (IAA) for data consistency.
Understand how to design and implement effective crowdsourcing tasks using Amazon Mechanical Turk.
Analyze crowdsourced data to enhance machine learning models and understand ethical considerations in AI.
Compétences que vous acquerrez
- Catégorie : Ethical Considerations in AI and Crowdsourcing
- Catégorie : Inter-Annotator Agreement (IAA) Analysis
- Catégorie : Data Collection and Analysis
- Catégorie : Machine Learning Fundamentals
- Catégorie : Crowdsourcing Techniques
Détails à connaître
Ajouter à votre profil LinkedIn
septembre 2024
15 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 6 modules dans ce cours
This course explores the intersection of machine learning (ML) and human input through various methodologies and tools. Spanning five modules, students will gain a comprehensive understanding of machine learning techniques, the role of human annotation in ML performance, and the principles and practices of crowdsourcing. The course covers key aspects of designing and implementing crowdsourced studies, calculating inter-annotator agreements, and leveraging crowdsourcing to enhance ML performance. Practical skills will be developed through hands-on activities using platforms like Amazon Mechanical Turk (AMT) and analyzing the data collected from such platforms.
Inclus
1 lecture1 plugin
In this module, you’ll be introduced to the fundamentals of machine learning (ML). You’ll learn the definition and principles of ML, and gain practical skills in calculating and comparing ML performance metrics. You’ll get a chance to understand how to construct ML classifiers and analyze their effectiveness across different algorithms. This module prepares you to apply ML techniques effectively in various domains, enhancing your ability to solve complex problems using data-driven approaches.
Inclus
5 vidéos2 lectures3 devoirs1 laboratoire non noté
In this module, you’ll explore the significance of IAA in Machine Learning (ML) performance. You’ll learn to calculate IAA manually and implement Krippendorf’s Alpha using the software. You’ll gain insights into how IAA impacts the reliability of annotated data and its implications for ML model training. This module equips you with essential skills to ensure consistency and reliability in data annotation processes, crucial for effective ML applications.
Inclus
3 vidéos2 lectures3 devoirs
In this module, you’ll be introduced to the concept and practical applications of crowdsourcing. You’ll get a chance to learn how crowdsourcing enhances problem-solving through collective efforts and explore real-world use cases. You’ll be able to establish your first Amazon Mechanical Turk (AMT) account and understand the platform's capabilities for executing crowdsourced tasks. You’ll get a chance to delve into crowdsourcing design principles to optimize task efficiency and reliability. This module prepares you to leverage crowdsourcing effectively for diverse applications, from data annotation to research experiments.
Inclus
4 vidéos1 lecture3 devoirs1 laboratoire non noté
Platform" module focuses on leveraging Amazon Mechanical Turk (AMT) for crowdsourcing studies. Learn to design effective experiments using AMT, ensuring optimal task design and participant engagement. Collect data through AMT and perform initial analyses to derive meaningful insights from crowdsourced data. Understand the implications of AMT addiction and ethical considerations in platform-based research. This module equips you with practical skills to conduct reliable and insightful crowdsourcing studies using AMT.
Inclus
2 vidéos3 lectures3 devoirs1 laboratoire non noté
This module explores the intersection of crowdsourcing and ML performance enhancement. Evaluate how Inter-Annotator Agreement (IAA) affects ML model reliability and accuracy. Explore case studies such as COVID test kit distribution and organ transplant matching to understand real-world applications. Learn to optimize ML performance through effective crowdsourcing design, ensuring data quality and reliability in machine learning applications.
Inclus
4 vidéos3 lectures3 devoirs
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Software Development
DeepLearning.AI
Scrimba
DeepLearning.AI
Kennesaw State University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.