In this project-based course, you are going to build an end-to-end machine learning pipeline in Azure ML Studio, all without writing a single line of code! This course uses the Adult Income Census data set to train a model to predict an individual's income. It predicts whether an individual's annual income is greater than or less than $50,000. The estimator used in this project is a Two-Class Boosted Decision Tree classifier. Some of the features used to train the model are age, education, occupation, etc. Once you have scored and evaluated the model on the test data, you will deploy the trained model as an Azure Machine Learning web service. In just under an hour, you will be able to send new data to the web service API and receive the resulting predictions.
Machine Learning Pipelines with Azure ML Studio
Instructeur : Snehan Kekre
51 717 déjà inscrits
Inclus avec
(777 avis)
Expérience recommandée
Ce que vous apprendrez
Pre-process data using appropriate modules
Train and evaluate a boosted decision tree model on Azure ML Studio
Create scoring and predictive experiments
Deploy the trained model as an Azure web service
Compétences que vous pratiquerez
- Catégorie : Azure Machine Learning
- Catégorie : Data Science
- Catégorie : Binary Classification
- Catégorie : Data Analysis
- Catégorie : Machine Learning
Détails à connaître
Ajouter à votre profil LinkedIn
Disponible uniquement sur ordinateur
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Apprendre, pratiquer et appliquer des compétences prêtes à l'emploi en moins de 2 heures
- Bénéficiez d’une formation par des experts du secteur
- Gagnez en expérience pratique en effectuant des tâches professionnelles du monde réel
- Renforcez votre confiance en utilisant les outils et technologies les plus récents
À propos de ce Projet Guidé
Apprendrez étape par étape
Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :
Introduction and Project Overview
Data Cleaning
Accounting for Class Imbalance
Training a Two-Class Boosted Decision Tree Model and Hyperparameter Tuning
Scoring and Evaluating the Models
Publishing the Trained Model as a Web Service for Inference
Expérience recommandée
A basic understanding of machine learning workflows.
8 images de projet
Instructeur
Offert par
Méthode d’apprentissage
Apprentissage pratique basé sur les compétences
Mettez en pratique de nouvelles compétences en effectuant des tâches professionnelles.
Conseils d’experts
Suivez les vidéos pré-enregistrées d’experts à l’aide d’une interface unique, divisée en deux.
Aucun téléchargement ou installation requis(e)
Accédez aux outils et aux ressources dont vous avez besoin dans un espace de travail cloud préconfiguré.
Disponible uniquement sur ordinateur de bureau
Ce Projet Guidé est conçu pour les ordinateurs portables ou de bureau disposant d’une connexion internet fiable, et non pour les appareils mobiles.
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
777 avis
- 5 stars
70,05 %
- 4 stars
21,33 %
- 3 stars
5,78 %
- 2 stars
1,28 %
- 1 star
1,54 %
Affichage de 3 sur 777
Révisé le 12 sept. 2020
What a nice way to learn and do the practical along with the instructor
Révisé le 20 déc. 2020
It may be good. But I can't sign up azure cause my country is not in the list
Révisé le 17 févr. 2022
I successfully completed Machine Learning Pipelines with Azure ML Studio
Vous aimerez peut-être aussi
University of Colorado Boulder
Google Cloud
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Comme votre espace de travail contient un bureau cloud dimensionné pour un ordinateur portable ou de bureau, les Projets Guidés ne sont pas disponibles sur votre appareil mobile.
Les enseignants des Projets Guidés sont des experts en la matière qui ont de l'expérience dans les compétences, les outils ou le domaine de leur projet et qui sont passionnés par le partage de leurs connaissances avec des millions d'étudiants dans le monde.
À partir du Projet Guidé, vous pouvez télécharger et conserver tout fichier que vous avez créé. Pour ce faire, vous pouvez utiliser la fonction « Navigateur de fichiers » pendant que vous accédez à votre bureau cloud.