In this two hour project-based course, you will implement Deep Convolutional Generative Adversarial Network using PyTorch to generate handwritten digits. You will create a generator that will learn to generate images that look real and a discriminator that will learn to tell real images apart from fakes. This hands-on-project will provide you the detail information on how to implement such network and train to generate handwritten digit images.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Deep Learning with PyTorch : Generative Adversarial Network
Instructeur : Parth Dhameliya
8 586 déjà inscrits
Inclus avec
(77 avis)
Expérience recommandée
Ce que vous apprendrez
Create Discriminator and Generator Network
Create a training loop to train GAN model
Compétences que vous pratiquerez
- Catégorie : Convolutional Neural Network
- Catégorie : Python Programming
- Catégorie : Genrative Adversarial Network
- Catégorie : pytorch
Détails à connaître
Ajouter à votre profil LinkedIn
Disponible uniquement sur ordinateur
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Apprendre, pratiquer et appliquer des compétences prêtes à l'emploi en moins de 2 heures
- Bénéficiez d’une formation par des experts du secteur
- Gagnez en expérience pratique en effectuant des tâches professionnelles du monde réel
- Renforcez votre confiance en utilisant les outils et technologies les plus récents
À propos de ce Projet Guidé
Apprendrez étape par étape
Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :
Setup Google Runtime (2 min)
Configurations (4 min)
Load MNIST Handwritten Dataset (6 min)
Load Dataset into Batches (5 min)
Create Discriminator Network (12 min)
Create Generator Network (15 min)
Create Loss Function and Load Optimizers (4 min)
Training GAN (14 min)
Expérience recommandée
Prior programming experience in Python and basic pytorch. Theoretical knowledge of Convolutional Neural Network and Training process (Optimization)
8 images de projet
Instructeur
Offert par
Méthode d’apprentissage
Apprentissage pratique basé sur les compétences
Mettez en pratique de nouvelles compétences en effectuant des tâches professionnelles.
Conseils d’experts
Suivez les vidéos pré-enregistrées d’experts à l’aide d’une interface unique, divisée en deux.
Aucun téléchargement ou installation requis(e)
Accédez aux outils et aux ressources dont vous avez besoin dans un espace de travail cloud préconfiguré.
Disponible uniquement sur ordinateur de bureau
Ce Projet Guidé est conçu pour les ordinateurs portables ou de bureau disposant d’une connexion internet fiable, et non pour les appareils mobiles.
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 77
77 avis
- 5 stars
70,51 %
- 4 stars
19,23 %
- 3 stars
2,56 %
- 2 stars
2,56 %
- 1 star
5,12 %
Révisé le 23 sept. 2024
Vous aimerez peut-être aussi
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Comme votre espace de travail contient un bureau cloud dimensionné pour un ordinateur portable ou de bureau, les Projets Guidés ne sont pas disponibles sur votre appareil mobile.
Les enseignants des Projets Guidés sont des experts en la matière qui ont de l'expérience dans les compétences, les outils ou le domaine de leur projet et qui sont passionnés par le partage de leurs connaissances avec des millions d'étudiants dans le monde.
À partir du Projet Guidé, vous pouvez télécharger et conserver tout fichier que vous avez créé. Pour ce faire, vous pouvez utiliser la fonction « Navigateur de fichiers » pendant que vous accédez à votre bureau cloud.