What Is Sales Analytics and How Does It Benefit My Business?
March 4, 2024
Article
This course is part of multiple programs.
Instructor: Joseph Santarcangelo
3,800 already enrolled
Included with
(25 reviews)
Recommended experience
Intermediate level
Learners with some previous experience of Python programming. Familiarity with basic mathematical concepts such as gradients and matrices.
(25 reviews)
Recommended experience
Intermediate level
Learners with some previous experience of Python programming. Familiarity with basic mathematical concepts such as gradients and matrices.
Key concepts on Softmax regression and understand its application in multi-class classification problems.
How to develop and train shallow neural networks with various architectures.
Key concepts of deep neural networks, including techniques like dropout, weight initialization, and batch normalization.
How to develop convolutional neural networks, apply layers and activation functions.
Add to your LinkedIn profile
5 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
This course advances from fundamental machine learning concepts to more complex models and techniques in deep learning using PyTorch.
This comprehensive course covers techniques such as Softmax regression, shallow and deep neural networks, and specialized architectures, such as convolutional neural networks. In this course, you will explore Softmax regression and understand its application in multi-class classification problems. You will learn to train a neural network model and explore Overfitting and Underfitting, multi-class neural networks, backpropagation, and vanishing gradient. You will implement Sigmoid, Tanh, and Relu activation functions in Pytorch. In addition, you will explore deep neural networks in Pytorch using nn Module list and convolution neural networks with multiple input and output channels. You will engage in hands-on exercises to understand and implement these advanced techniques effectively. In addition, at the end of the course, you will gain valuable experience in a final project on a convolutional neural network (CNN) using PyTorch. This course is suitable for all aspiring AI engineers who want to gain advanced knowledge on deep learning using PyTorch. It requires some basic knowledge of Python programming and basic mathematical concepts such as gradients and matrices.
In this module, you will understand problem with mean squared error, and discuss maximum likelihood estimation. And then we'll see how to go from maximum likelihood estimation to calculating cross entropy loss, then Train the model PyTorch. You will apply your learnings in labs and test your concepts in quizzes.
2 videos1 reading1 assignment2 app items2 plugins
In this module, you will learn how to use Lines to classify data and understand the working of the Softmax function. The module also covers the argmax function and its utilization. You will create a custom module for Softmax using the nn.module package in PyTorch and use a Softmax classifier to create a model for performing classifications. You will apply your learnings in labs and test your concepts in quizzes.
3 videos1 reading1 assignment2 app items1 plugin
In this module, you will create a neural network with a hidden layer using nn.Module and nn.Sequential. You will learn to train a neural network model and how neurons can improve a model. The model will also explain how to construct networks with multiple dimensional input in PyTorch. In addition, you will explore Overfitting and Underfitting, multi-class neural networks, back propagation and vanishing gradient. Finally, you will implement Sigmoid, Tanh and Relu activation functions in Pytorch. You will apply your learnings in labs and test your concepts in quizzes.
6 videos1 assignment6 app items
This module provides an overview of deep neural network in Pytorch. You will learn to implement deep neural network in Pytorch using nn Module list. The module includes concepts like Dropout, layers, and weights. It will also discuss the problem of not initializing the Weights in a Neural Network model correctly and how to fix it. The module will also explore different initialization methods in Pytorch, gradient descent, and batch normalization. You will apply your learnings in labs and test your concepts in quizzes.
6 videos1 assignment10 app items1 plugin
This module describes convolution and how to determine the size of the activation map. The module also covers activation functions and max pooling. In addition, the modaule discusses convolution with multiple input and output channels. It summarizes Convolutional Neural Network Constructor, Forward Step, and training in PyTorch. You will learn concepts like graphics processing units (GPUs), CUDA, residual network, and Resnet18. You will apply your learnings in labs and test your concepts in quizzes.
7 videos1 assignment6 app items
In this module, you can complete a peer-reviewed final project to demonstrate and prove the skills you gained in the previous modules
2 readings1 peer review2 app items
At IBM, we know how rapidly tech evolves and recognize the crucial need for businesses and professionals to build job-ready, hands-on skills quickly. As a market-leading tech innovator, we’re committed to helping you thrive in this dynamic landscape. Through IBM Skills Network, our expertly designed training programs in AI, software development, cybersecurity, data science, business management, and more, provide the essential skills you need to secure your first job, advance your career, or drive business success. Whether you’re upskilling yourself or your team, our courses, Specializations, and Professional Certificates build the technical expertise that ensures you, and your organization, excel in a competitive world.
Course
Professional Certificate
25 reviews
84.61%
3.84%
3.84%
3.84%
3.84%
Showing 3 of 25
Reviewed on Feb 8, 2025
Perfect course with the right amount of difficulty and perfect learning
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.