Duke University

Mastering Data Analysis in Excel

Jana Schaich Borg
Daniel Egger

Instructors: Jana Schaich Borg

345,997 already enrolled

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
4.2

(3,920 reviews)

21 hours to complete
3 weeks at 7 hours a week
Flexible schedule
Learn at your own pace
93%
Most learners liked this course
Gain insight into a topic and learn the fundamentals.
4.2

(3,920 reviews)

21 hours to complete
3 weeks at 7 hours a week
Flexible schedule
Learn at your own pace
93%
Most learners liked this course

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

14 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Excel to MySQL: Analytic Techniques for Business Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 7 modules in this course

This course will prepare you to design and implement realistic predictive models based on data. In the Final Project (module 6) you will assume the role of a business data analyst for a bank, and develop two different predictive models to determine which applicants for credit cards should be accepted and which rejected. Your first model will focus on minimizing default risk, and your second on maximizing bank profits. The two models should demonstrate to you in a practical, hands-on way the idea that your choice of business metric drives your choice of an optimal model.The second big idea this course seeks to demonstrate is that your data-analysis results cannot and should not aim to eliminate all uncertainty. Your role as a data-analyst is to reduce uncertainty for decision-makers by a financially valuable increment, while quantifying how much uncertainty remains. You will learn to calculate and apply to real-world examples the most important uncertainty measures used in business, including classification error rates, entropy of information, and confidence intervals for linear regression. All the data you need is provided within the course, and all assignments are designed to be done in MS Excel. The course will give you enough practice with Excel to become fluent in its most commonly used business functions, and you’ll be ready to learn any other Excel functionality you might need in future (module 1). The course does not cover Visual Basic or Pivot Tables and you will not need them to complete the assignments. All advanced concepts are demonstrated in individual Excel spreadsheet templates that you can use to answer relevant questions. You will emerge with substantial vocabulary and practical knowledge of how to apply business data analysis methods based on binary classification (module 2), information theory and entropy measures (module 3), and linear regression (module 4 and 5), all using no software tools more complex than Excel.

What's included

2 videos2 readings

In this module, will explore the essential Excel skills to address typical business situations you may encounter in the future. The Excel vocabulary and functions taught throughout this module make it possible for you to understand the additional explanatory Excel spreadsheets that accompany later videos in this course.

What's included

8 videos1 reading2 assignments

Separating collections into two categories, such as “buy this stock, don’t but that stock” or “target this customer with a special offer, but not that one” is the ultimate goal of most business data-analysis projects. There is a specialized vocabulary of measures for comparing and optimizing the performance of the algorithms used to classify collections into two groups. You will learn how and why to apply these different metrics, including how to calculate the all-important AUC: the area under the Receiver Operating Characteristic (ROC) Curve.

What's included

6 videos1 reading2 assignments

In this module, you will learn how to calculate and apply the vitally useful uncertainty metric known as “entropy.” In contrast to the more familiar “probability” that represents the uncertainty that a single outcome will occur, “entropy” quantifies the aggregate uncertainty of all possible outcomes. The entropy measure provides the framework for accountability in data-analytic work. Entropy gives you the power to quantify the uncertainty of future outcomes relevant to your business twice: using the best-available estimates before you begin a project, and then again after you have built a predictive model. The difference between the two measures is the Information Gain contributed by your work.

What's included

7 videos1 reading2 assignments

The Linear Correlation measure is a much richer metric for evaluating associations than is commonly realized. You can use it to quantify how much a linear model reduces uncertainty. When used to forecast future outcomes, it can be converted into a “point estimate” plus a “confidence interval,” or converted into an information gain measure. You will develop a fluent knowledge of these concepts and the many valuable uses to which linear regression is put in business data analysis. This module also teaches how to use the Central Limit Theorem (CLT) to solve practical problems. The two topics are closely related because regression and the CLT both make use of a special family of probability distributions called “Gaussians.” You will learn everything you need to know to work with Gaussians in these and other contexts.

What's included

11 videos1 reading3 assignments

This module gives you additional valuable concepts and skills related to building high-quality models. As you know, a “model” is a description of a process applied to available data (inputs) that produces an estimate of a future and as yet unknown outcome as output. Very often, models for outputs take the form of a probability distribution. This module covers how to estimate probability distributions from data (a “probability histogram”), and how to describe and generate the most useful probability distributions used by data scientists. It also covers in detail how to develop a binary classification model with parameters optimized to maximize the AUC, and how to apply linear regression models when your input consists of multiple types of data for each event. The module concludes with an explanation of “over-fitting” which is the main reason that apparently good predictive models often fail in real life business settings. We conclude with some tips for how you can avoid over-fitting in you own predictive model for the final project – and in real life.

What's included

4 videos1 reading1 assignment

The final course project is a comprehensive assessment covering all of the course material, and consists of four quizzes and a peer review assignment. For quiz one and quiz two, there are learning points that explain components of the quiz. These learning points will unlock only after you complete the quiz with a passing grade. Before you start, please read through the final project instructions. From past student experience, the final project which includes all the quizzes and peer assessment, takes anywhere from 10-12 hours.

What's included

2 videos3 readings4 assignments1 peer review

Instructors

Instructor ratings
4.1 (226 ratings)
Jana Schaich Borg
Duke University
7 Courses739,203 learners
Daniel Egger
Duke University
8 Courses1,173,631 learners

Offered by

Duke University

Recommended if you're interested in Data Analysis

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Learner reviews

Showing 3 of 3920

4.2

3,920 reviews

  • 5 stars

    56.28%

  • 4 stars

    23.98%

  • 3 stars

    9.13%

  • 2 stars

    5.30%

  • 1 star

    5.28%

NP
4

Reviewed on May 11, 2018

PS
4

Reviewed on May 7, 2020

YL
5

Reviewed on Jul 21, 2020

New to Data Analysis? Start here.

Placeholder

Open new doors with Coursera Plus

Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions