What Is Programming? And How To Get Started
January 28, 2025
Article
(42 reviews)
Recommended experience
Intermediate level
Basic notions of linear algebra
(42 reviews)
Recommended experience
Intermediate level
Basic notions of linear algebra
You'll be able to build a basic recommender system.
You'll be able to choose the family of recommender systems that best suits the kind of input data, goals and needs.
You'll learn how to identify the correct evaluation activities to measure the quality of a recommender system, based on goals and needs.
You'll be able to point out benefits and limits of different techniques for recommender systems in different scenarios.
Add to your LinkedIn profile
4 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
The Basic Recommender Systems course introduces you to the leading approaches in recommender systems. The techniques described touch both collaborative and content-based approaches and include the most important algorithms used to provide recommendations. You'll learn how they work, how to use and how to evaluate them, pointing out benefits and limits of different recommender system alternatives.
After completing this course, you'll be able to describe the requirements and objectives of recommender systems based on different application domains. You'll know how to distinguish recommender systems according to their input data, their internal working mechanisms, and their goals. You’ll have the tools to measure the quality of a recommender system and incrementally improve it with the design of new algorithms. You'll learn as well how to design recommender systems tailored for new application domains, also considering surrounding social and ethical issues such as identity, privacy, and manipulation. Providing affordable, personalised and high-quality recommendations is always a challenge! The course also leverages two important EIT Overarching Learning Outcomes (OLOs), related to creativity and innovation skills. In trying to design a new recommender system you need to think beyond boundaries and try to figure out how you can improve the quality of the predictions. You should also be able to use knowledge, ideas and technology to create new or significantly improved recommendation tools to support choice-making processes and strategies in different and innovative scenarios, for a better quality of life.
In this first module, we'll review the basic concepts for recommender systems in order to classify and analyse different families of algorithms, related to specific set of input data. At the end, you’ll be able to choose the most suitable type of algorithm based on the data available, your needs and goals. Conversely, you'll know how to select the input data based on the algorithm you want to use.
11 videos2 readings1 assignment1 peer review2 discussion prompts
In this second module, we'll learn how to define and measure the quality of a recommender system. We'll review different metrics that can be used to measure for this purpose. At the end of the module you'll be able to identify the correct evaluation activities required to measure the quality of a given recommender system, based on goals and needs.
12 videos1 assignment1 peer review2 discussion prompts
In this module we’ll analyse content-based recommender techniques. These algorithms recommend items similar to the ones a user liked in the past. We’ll review different similarity functions and you’ll then be able to choose the more suitable one for your system. The main input is the Item-Content Matrix (ICM) which describes all the attributes for each item. We’ll see how we can improve the quality of content-based techniques, by normalising and tuning the importance of each attribute in the ICM: you’ll be able to use some specific tuning strategies in order to obtain the best quality recommendations from your system. So, at the end of this module, you’ll know how to build a content-based recommender system, how to clean and normalize your input data.
9 videos1 assignment1 peer review2 discussion prompts
In this module we’ll study collaborative filtering techniques, which use the User Rating Matrix (URM) as the main input data, describing the interaction between users and items. We’ll learn how to build non-personalised recommender systems and how to normalise the URM, in order to provide better recommendations. At the end of the module you’ll be able to select the most appropriate similarity function and the most suitable way to compute similarity, overcoming issues related to explicit ratings.
9 videos1 assignment1 peer review2 discussion prompts
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
EIT Digital is a European education and innovation organisation with a mission to foster digital technology innovation and entrepreneurial talent for economic growth and quality of life. By linking education, research, and business, EIT Digital empowers digital top talent for the future. EIT Digital provides online and face-to-face Innovation and Entrepreneurship education to raise quality, increase diversity and availability of the top-level content provided by 20 leading technical universities around Europe. The universities deliver a unique blend of the best of technical excellence and entrepreneurial skills and mindset to digital engineers and entrepreneurs at all stages of their careers. The academic partners support Coursera’s bold vision to enable anyone, anywhere, to transform their lives by accessing the world’s best learning experience. This means that EIT Digital gradually shares parts of its entrepreneurial and academic education programmes to demonstrate its excellence and make it accessible to a much wider audience. EIT Digital’s online education portfolio can be used as part of blended education settings, in both Master's and Doctorate programmes, and for professionals as a way to update their knowledge.
Politecnico di Milano is a scientific-technological University, which trains engineers, architects and industrial designers. From 2014 Politecnico di Milano started the release of several MOOCs, developed by the service for digital learning METID (Methods and Innovative Technologies for Learning), giving everybody the chance to enhance personal skills.
Course
University of Minnesota
Course
42 reviews
66.66%
19.04%
4.76%
2.38%
7.14%
Showing 3 of 42
Reviewed on Oct 24, 2020
There is a nice introduction to recommender systems field
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.