Blockchain Developer Salary Guide: How Much Can You Make?
November 14, 2024
Article · 7 min read
Recommended experience
Intermediate level
Basic familiarity with Python. In particular, importing libraries, defining variables, arrays, functions, and classes, and creating plots.
Recommended experience
Intermediate level
Basic familiarity with Python. In particular, importing libraries, defining variables, arrays, functions, and classes, and creating plots.
Adapt the main components of neural networks: inputs, layers, weights, and activation functions according to the specific application.
Use TensorFlow and Keras to design, implement, and adapt convolutional neural networks for image recognition tasks.
Evaluate neural network models and measure their accuracy, modify the parameters of the model if needed to improve its accuracy.
Add to your LinkedIn profile
Only available on desktop
In this 90-min long project-based course you will learn how to use Tensorflow to construct neural network models. Specifically, we will design, execute, and evaluate a neural network model to help a retail company with their marketing campaign by classifying images of clothing items into 10 different categories. Throughout this course, you will learn how to use Tensorflow to build and analyze neural neural networks that can perform multi-label classification for applications in image recognition. You will also be able to identify and adapt the main components of neural networks as well as evaluate the performance of different models and implement measures to improve their accuracy. At the end of the project, you will be able to design and implement convolutional neural networks helping a retail store with their targeted ad campaign, and the models can be easily adapted for self-driving cars, computer-assisted medical diagnosis, etc.
This course is aimed at learners who want to get started with the design and implementation of neural networks with an intuitive and effective approach thanks to the Tensorflow library. Computer users with experience with programming in Python should be able to complete the project successfully.
In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:
Understand the main components of neural networks in machine learning
Train your first neural network for image classification
Improve neural network accuracy through hidden layers and different optimizers
Practice Activity: Fine tune a neural network and improve its accuracy
Visualize training data and performance of the model
Create a convolutional neural network with Conv2D and MaxPooling2D
Reduce overfitting with BatchNormalization, Dropout, and L2 regularization
Practice Activity: Create alternative neural network models to reduce overfitting
CIFAR-10 Classification Challenge
Basic familiarity with Python. In particular, importing libraries, defining variables, arrays, functions, and classes, and creating plots.
The Coursera Project Network is a select group of instructors who have demonstrated expertise in specific tools or skills through their industry experience or academic backgrounds in the topics of their projects. If you're interested in becoming a project instructor and creating Guided Projects to help millions of learners around the world, please apply today at teach.coursera.org.
Skill-based, hands-on learning
Practice new skills by completing job-related tasks.
Expert guidance
Follow along with pre-recorded videos from experts using a unique side-by-side interface.
No downloads or installation required
Access the tools and resources you need in a pre-configured cloud workspace.
Available only on desktop
This Guided Project is designed for laptops or desktop computers with a reliable Internet connection, not mobile devices.
Coursera Project Network
Course
Coursera Project Network
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
By purchasing a Guided Project, you'll get everything you need to complete the Guided Project including access to a cloud desktop workspace through your web browser that contains the files and software you need to get started, plus step-by-step video instruction from a subject matter expert.
Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.
Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.
You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.
Guided Projects are not eligible for refunds. See our full refund policy.
Financial aid is not available for Guided Projects.
Auditing is not available for Guided Projects.
At the top of the page, you can press on the experience level for this Guided Project to view any knowledge prerequisites. For every level of Guided Project, your instructor will walk you through step-by-step.
Yes, everything you need to complete your Guided Project will be available in a cloud desktop that is available in your browser.
You'll learn by doing through completing tasks in a split-screen environment directly in your browser. On the left side of the screen, you'll complete the task in your workspace. On the right side of the screen, you'll watch an instructor walk you through the project, step-by-step.